Читаем Большая Советская Энциклопедия (МЕ) полностью

Метреве'ли Александр Ираклиевич (р. 2.11.1944, Тбилиси), советский спортсмен-теннисист, заслуженный мастер спорта (1966), журналист. Чемпион СССР (17 раз в 1966—73), Европы (9 раз в 1967—73) в разных разрядах, в 1967—72 неоднократный победитель открытых первенств Азии, АРЕ, Индии, ряда штатов Австралийского Союза.

Метрика (в музыке)

Ме'трика в музыке, с середины 19 в. учение о метре .

Метрика (матем. термин)

Ме'трика, математический термин, обозначающий правило определения того или иного расстояния между любыми двумя точками (элементами) данного множества А . При этом расстоянием r(а, b ) между точками а и b множества А называется вещественная числовая функция, удовлетворяющая следующим условиям:

  1) r(а, b ) ³ 0, причём r(а, b ) = 0 тогда и только тогда, когда а = b ,

  2) r(а, b ) = r(b, а ); 3) r(а, b ) + r(b, с ) ³ r(а, с ). На одном и том же множестве М. может вводиться различным образом. Например, на плоскости за расстояние между точками а и b , имеющими координаты (x1 , y1 ) и (х2 , y2 ) соответственно, можно принять не только обычное евклидово расстояние

но и различные другие расстояния, например

  В векторных пространствах (функциональных и координатных) М. часто задаются нормы, иногда — с помощью скалярного произведения. В дифференциальной геометрии М. вводится путём задания элемента длины дуги при помощи дифференциальной квадратичной формы (см. Римановы геометрии ). Множество с введённой на нём М. называется метрическим пространством .

  Иногда под М. понимают правило определения не только расстояний, но и углов; например, проективная метрика .

  В. И. Соболев.

Метрика пространства-времени

Ме'трика простра'нства-вре'мени, определяет геометрические свойства четырёхмерного пространства-времени (объединяющего физическое трёхмерное пространство и время) в относительности теории . М. п.-в. характеризуется инвариантной (не зависящей от системы отсчёта) величиной — квадратом четырёхмерного интервала , определяющим пространственно-временную связь (квадрат «расстояния») между двумя бесконечно близкими событиями,

Здесь dx1 , dx2 , dx3 — разности пространственных координат событий, dx = cdt , где dt — разность времён этих событий, с — скорость света, а gik — компоненты т. н. метрического тензора . В общем случае метрический тензор удовлетворяет уравнениям Эйнштейна общей теории относительности (см. Тяготение ) и компоненты gik являются функциями координат x1 , x2 , x3 , x , причём вид этих функций в выбранной системе отсчёта зависит от содержащихся в пространстве-времени масс. В отсутствие больших масс метрический тензор может быть приведён к виду

g11 = g22 = g33 = — 1, g00 = +1,

gik , = 0 при i ¹ k ;     (2)

тогда (в прямоугольных декартовых координатах x1 = x, x2 = у, x3 = z )

ds2 =c2 dt2 — dx2 — dy2 — dz2 .     (3)

  Пространство-время с такой метрикой является евклидовым пространством (точнее, псевдоевклидовым из-за знака «минус» перед dx2 , dy2 , dz2 ); его называют «плоским пространством». Такова М. п.-в. в специальной теории относительности (или эквивалентная метрика Минковского пространства ).

  При наличии больших масс никаким преобразованием координат нельзя привести метрический тензор к виду (2) во всём пространстве-времени. Это означает, что пространство-время обладает кривизной, которая определяется компонентами gik , (и их производными по координатам). Т. о., геометрические свойства пространства-времени (его метрика) зависят от находящейся в нём материи. Степень отклонения М. п.-в. от евклидовой определяется распределением в этом пространстве масс и их движением. При этом поле тяготения, обусловленное массами и вызывающее, в свою очередь, движение масс, рассматривается в общей теории относительности как проявление искривлённости пространства-времени и определяется, как и М. п.-в., величинами gik . Искривлённость пространства-времени означает, в частности, как отклонение чисто пространственной геометрии от евклидовой, так и зависимость скорости течения времени от поля тяготения.

  Лит . см. при статьях Относительности теория , Тяготение .

  Г. А. Зисман.

Метрика (свид-во о рождении)

Ме'трика, принятое в обиходе название свидетельства о рождении.

Метрика (стихосложение)

Перейти на страницу:

Похожие книги

100 знаменитых харьковчан
100 знаменитых харьковчан

Дмитрий Багалей и Александр Ахиезер, Николай Барабашов и Василий Каразин, Клавдия Шульженко и Ирина Бугримова, Людмила Гурченко и Любовь Малая, Владимир Крайнев и Антон Макаренко… Что объединяет этих людей — столь разных по роду деятельности, живущих в разные годы и в разных городах? Один факт — они так или иначе связаны с Харьковом.Выстраивать героев этой книги по принципу «кто знаменитее» — просто абсурдно. Главное — они любили и любят свой город и прославили его своими делами. Надеемся, что эти сто биографий помогут читателю почувствовать ритм жизни этого города, узнать больше о его истории, просто понять его. Тем более что в книгу вошли и очерки о харьковчанах, имена которых сейчас на слуху у всех горожан, — об Арсене Авакове, Владимире Шумилкине, Александре Фельдмане. Эти люди создают сегодняшнюю историю Харькова.Как знать, возможно, прочитав эту книгу, кто-то испытает чувство гордости за своих знаменитых земляков и посмотрит на Харьков другими глазами.

Владислав Леонидович Карнацевич

Неотсортированное / Энциклопедии / Словари и Энциклопедии