Периодом создания научных основ динамики, а с ней и всей М. явился 17 век. Уже в 15—16 вв. в странах Западной и Центральной Европы начинают развиваться буржуазные отношения, что привело к значительному развитию ремёсел, торгового мореплавания и военного дела (совершенствование огнестрельного оружия). Это поставило перед наукой ряд важных проблем: исследование полёта снарядов, удара тел, прочности больших кораблей, колебаний маятника (в связи с созданием часов) и др. Но найти их решение, требовавшее развития динамики, можно было только разрушив ошибочные положения продолжавшего господствовать учения Аристотеля. Первый важный шаг в этом направлении сделал Н. Коперник
(16 в.), учение которого оказало огромное влияние на развитие всего естествознания и дало М. понятия об относительности движения и о необходимости при его изучении выбора системы отсчёта. Следующим шагом было открытие И. Кеплером
опытным путём кинематических законов движения планет (начало 17 в.). Окончательно ошибочные положения аристотелевой динамики опроверг Г. Галилей
, заложивший научные основы современной М. Он дал первое верное решение задачи о движении тела под действием силы, найдя экспериментально закон равноускоренного падения тел в вакууме. Галилей установил два основных положения М. — принцип относительности классической М. и закон инерции, который он, правда, высказал лишь для случая движения вдоль горизонтальной плоскости, но применял в своих исследованиях в полной общности. Он первый нашёл, что в вакууме траекторией тела, брошенного под углом к горизонту, является парабола, применив при этом идею сложения движений: горизонтального (по инерции) и вертикального (ускоренного). Открыв изохронность малых колебаний маятника, он положил начало теории колебаний. Исследуя условия равновесия простых машин и решая некоторые задачи гидростатики, Галилей использует сформулированное им в общем виде т. н. золотое правило статики — начальную форму принципа возможных перемещений. Он же первый исследовал прочность балок, чем положил начало науке о сопротивлении материалов. Важная заслуга Галилея — планомерное введение в М. научного эксперимента. Современник Галилея Р. Декарт
в основу своих исследований по М. положил сформулированный в общем виде закон инерции и высказанный им (но не в векторной форме) закон сохранения количества движения; он же ввёл понятие импульса силы. Дальнейший крупный шаг в развитии М. был сделан голландским учёным Х. Гюйгенсом. Ему принадлежит решение ряда важнейших для того времени задач динамики — исследование движения точки по окружности, колебаний физического маятника, законов упругого удара тел. При этом он впервые ввёл понятия центростремительной и центробежной силы и понятие о моменте инерции (сам термин принадлежит Л. Эйлеру), а также применил принцип, по существу эквивалентный закону сохранения механической энергии, общее математическое выражение которого дал впоследствии Г. Гельмгольц
. Заслуга окончательной формулировки основных законов М. принадлежит И. Ньютону
(1687). Завершив исследования своих предшественников, Ньютон обобщил понятие силы и ввёл в М. понятие о массе. Сформулированный им основной (второй) закон М. позволил Ньютону успешно разрешить большое число задач, относящихся главным образом к небесной М., в основу которой был положен открытый им же закон всемирного тяготения. Он формулирует и 3-й из основных законов М. — закон равенства действия и противодействия, лежащий в основе М. системы материальных точек. Исследованиями Ньютона завершается создание основ классической М. К тому же периоду относится установление двух исходных положений М. сплошной среды. Ньютон, исследовавший сопротивление жидкости движущимися в ней телами, открыл основной закон внутреннего трения в жидкостях и газах, а английский учёный Р. Гук экспериментально установил закон, выражающий зависимость между напряжениями и деформациями в упругом теле. В 18 в. интенсивно развивались общие аналитические методы решения задач М. материальной точки, системы точек и твёрдого тела, а также небесной М., основывавшиеся на использовании открытого Ньютоном и Г. В. Лейбницем
исчисления бесконечно малых. Главная заслуга в применении этого исчисления для решения задач М. принадлежит Л. Эйлеру
. Он разработал аналитические методы решения задач динамики материальной точки, развил теорию моментов инерции и заложил основы М. твёрдого тела. Ему принадлежат также первые исследования по теории корабля, теории устойчивости упругих стержней, теории турбин и решение ряда прикладных задач кинематики. Вкладом в развитие прикладной М. явилось установление французскими учёными Г. Амонтоном и Ш. Кулоном экспериментальных законов трения.