Читаем Большая Советская Энциклопедия (МО) полностью

  Размер М. как целого, т. с. размер её электронной оболочки, есть величина до некоторой степени условная — имеется отличная от нуля, хотя и весьма малая, вероятность найти электроны М. и на большом расстоянии от её атомных ядер. Практически размеры М. определяются равновесным расстоянием, на которое они могут быть сближены при плотной упаковке М. в молекулярном кристалле и в жидкости. На больших расстояниях М. притягиваются одна к другой, на меньших — отталкиваются. Размеры М. поэтому можно найти с помощью рентгеноструктурного анализа молекулярных кристаллов, порядок величины этих размеров может быть определён из коэффициентов диффузии, теплопроводности и вязкости газов и из плотности вещества в конденсированном состоянии. Расстояние, на которое могут сблизиться валентно не связанные атомы, принадлежащие одной и той же М. или различным М., может быть охарактеризовано средними значениями т. н. ван-дер-ваальсовых радиусов (в Ǻ):

H……... 1,0-1,2 S……… 1,9
C……... 1,75-2,0 Se…….. 1,0
N……... 1,5 Te…….. 2,2
P……… 1,9 F……… 1,4
As…….. 2,0 Cl……... 1,8
Sb…….. 2,2 Br……... 2,0
O……… 1,4 I………. 2,2

  Ван-дер-ваальсовы радиусы существенно превышают ковалентные. Зная величины ван-дер-ваальсовых, ковалентных, а также ионных радиусов, можно построить наглядные модели М., отражающие форму и размеры их электронных оболочек (рис. 2 ).

  Ковалентные химические связи в М. расположены под определёнными углами, зависящими от состояния гибридизации атомных орбиталей (см. Валентность ). Так, для М. насыщенных органических соединений характерно тетраэдрическое расположение связей, образуемых атомом углерода; для М. с двойной связью (С=С) — плоское расположение связей атомов углерода; в М. соединений с тройной связью (СºС) — линейное расположение связей:

  Таким образом, многоатомная М. обладает определённой конфигурацией в пространстве, т. е. определённой геометрией расположения связей, которая не может быть изменена без их разрыва. М. характеризуется той или иной симметрией расположения атомов. Если М. не имеет плоскости и центра симметрии, то она может существовать в двух конфигурациях, представляющих зеркальные отражения одна другой (зеркальные антиподы, или стереоизомеры, см. Изомерия ). Все важнейшие биологически функциональные вещества в живой природе фигурируют в форме одного определённого стерсоизомера.

  М., содержащие единичные связи, или сигма-связи, могут существовать в различных конформациях , возникающих при поворотах атомных групп вокруг единичных связей. Важные особенности макромолекул синтетических и биологических полимеров определяются именно их конформационными свойствами.

  Взаимодействие атомов в молекуле. Природа химических связей в М. оставалась загадочной вплоть до создания квантовой механики — классическая физика не могла объяснить насыщаемость и направленность валентных связей. Основы теории химической связи были созданы В. Гейтлером и немецким учёным Ф. Лондоном в 1927 на примере простейшей молекулы Н2 . В дальнейшем теория и методы расчёта были значительно усовершенствованы, в частности на основе широкого применения молекулярных орбиталей метода , и квантовая химия позволяет вычислять межатомные расстояния, энергии М., энергии химических связей и распределение электронной плотности для сложных М.; при этом расчётные данные хорошо согласуются с экспериментальными.

  Химические связи в М. подавляющего числа органических соединений являются ковалентными. Напротив, в ряде неорганических соединений существуют ионные, а также донорно-акцепторные связи (см. Химическая связь ), реализуемые в результате обобществления неподелённой пары электронов данного атома. Энергия образования М. из атомов во многих рядах сходных соединений приближённо аддитивна. Иными словами, в этих случаях можно считать, что энергия М. есть сумма энергии её связей, имеющих постоянные значения в рассматриваемом ряду. Отсюда следует практическая возможность приписать химическим связям приближённо автономные электронные оболочки.

Перейти на страницу:

Похожие книги