Анализ акустических данных для жидкостей обычно проводить труднее, чем для газов, поскольку область релаксации здесь, как правило, лежит в диапазоне более высоких частот, требующем более сложных измерений. В очень вязких жидкостях, полимерах и некоторых других веществах в поглощение и дисперсию может давать вклад целый набор релаксационных процессов с широким спектром времён релаксации. Поскольку время релаксации зависит от температуры и давления, меняя эти параметры, можно сдвигать по частоте область релаксации. Так, например, в газе повышение давления газа эквивалентно уменьшению частоты. Это бывает удобно использовать при измерении скорости и поглощения звука, если частота релаксации при нормальных условиях оказывается в том диапазоне частот, который с трудом поддаётся экспериментальному исследованию. Изучение температурных зависимостей скорости и поглощения звука позволяет разделить вклад различных релаксационных процессов.
В М. а. для исследований обычно применяется ультразвук
;
в газах — в диапазоне частот 104
—105
гц,
а в жидкостях и твёрдых телах — в диапазоне 105
—108
гц.
Это связано как с высоким развитием техники излучения и приёма ультразвука и с большой точностью измерений в этом диапазоне частот, так и с тем, что работа на более низких частотах потребовала бы очень больших объёмов исследуемого вещества, а на более высоких частотах поглощение звука становится столь большим, что многие акустические методы оказываются неприменимыми. Лит.:
Михайлов И. Г., Соловье в В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 2, ч. А, М., 1968, т. 4, ч. А и Б, М., 1970; Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., М., 1956; Herzfeld K. F., Litovitz Т. A., Absorption and dispersion of ultrasonic waves, N. Y. — L., 1959. А. Л. Полякова.
Молекулярная биология
Молекуля'рная биоло'гия,
наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом является выяснение того, каким образом и в какой мере характерные проявления жизни, такие, как наследственность, воспроизведение себе подобного, биосинтез белков, возбудимость, рост и развитие, хранение и передача информации, превращения энергии, подвижность и т. д., обусловлены структурой, свойствами и взаимодействием молекул биологически важных веществ, в первую очередь двух главных классов высокомолекулярных биополимеров
—
белков и нуклеиновых кислот. Отличительная черта М. б. — изучение явлений жизни на неживых объектах или таких, которым присущи самые примитивные проявления жизни. Таковыми являются биологические образования от клеточного уровня и ниже: субклеточные органеллы, такие, как изолированные клеточные ядра, митохондрии, рибосомы, хромосомы, клеточные мембраны; далее — системы, стоящие на границе живой и неживой природы, — вирусы, в том числе и бактериофаги, и кончая молекулами важнейших компонентов живой материи — нуклеиновых кислот
и белков
.
М. б. — новая область естествознания, тесно связанная с давно сложившимися направлениями исследований, которые охватываются биохимией
, биофизикой
и биоорганической химией
.
Разграничение здесь возможно лишь на основе учёта применяемых методов и по принципиальному характеру используемых подходов. Фундамент, на котором развивалась М. б., закладывался такими науками, как генетика, биохимия, физиология элементарных процессов и т. д. По истокам своего развития М. б. неразрывно связана с молекулярной генетикой
,
которая продолжает составлять важную часть М. б., хотя и сформировалась уже в значительной мере в самостоятельную дисциплину. Вычленение М. б. из биохимии продиктовано следующими соображениями. Задачи биохимии в основном ограничиваются констатацией участия тех или иных химических веществ при определённых биологических функциях и процессах и выяснением характера их превращений; ведущее значение принадлежит сведениям о реакционной способности и об основных чертах химического строения, выражаемого обычной химической формулой. Т. о., по существу, внимание сосредоточено на превращениях, затрагивающих главновалентные химические связи. Между тем, как было подчёркнуто Л. Полингом
,
в биологических системах и проявлениях жизнедеятельности основное значение должно быть отведено не главновалентным связям, действующим в пределах одной молекулы, а разнообразным типам связей, обусловливающих межмолекулярные взаимодействия (электростатическим, ван-дер-ваальсовым, водородным связям и др.).