Читаем Большая Советская Энциклопедия (НА) полностью

  Случай одного неизвестного. Пусть для оценки значения неизвестной величины m произведено n независимых наблюдений, давших результаты Y 1 , Y 2 ,..., Yn , т. е. Y 1 = m + d1 , Y 2 = m + d2 ,..., Yn = m + dn , где d1 , d2 ,..., dn — случайные ошибки (по определению, принятому в классической теории ошибок, случайные ошибки — независимые случайные величины с нулевым математическим ожиданием: Е di = 0; если же E di ¹ 0, то Е di , называются систематическими ошибками). Согласно Н. к. м., в качестве оценки величины m принимают такое X, для которого будет наименьшей сумма квадратов (отсюда и само название метода):

  где pi = k/ si 2 и si 2 = D di = E di 2

(коэффициент k > 0 можно выбирать произвольно). Величину pi называют весом, a si — квадратичным отклонением измерения с номером i . В частности, если все измерения равноточны, то s1 = s2 =... = sn , и в этом случае можно положить p 1 = p 2 =... = pn = 1; если же каждое Yi , — арифметическое среднее из ni , равноточных измерений, то полагают pi = ni .

  Сумма S (X ) будет наименьшей, если в качестве Х выбрать взвешенное среднее:

Оценка  величины m лишена систематической ошибки, имеет вес Р и дисперсию

В частности, если все измерения равноточны, то Y — арифметическое среднее результатов измерений:

  При некоторых общих предположениях можно показать, что если количество наблюдений n достаточно велико, то распределение оценки  мало отличается от нормального с математическим ожиданием m и дисперсией k/P . В этом случае абсолютная погрешность приближённого равенства

меньше

с вероятностью, близкой к значению интеграла

[напр., I (1,96) = 0,950; I (2,58) = 0,990; I (3,00) = 0,997].

  Если веса измерений pi заданы, а множитель k до наблюдений остаётся неопределённым, то этот множитель и дисперсия оценки  могут быть приближённо оценены по формулам:

и

(обе оценки лишены систематических ошибок).

  В том практически важном случае, когда ошибки di подчиняются нормальному распределению, можно найти точное значение вероятности, с которой абсолютная погрешность приближённого равенства

окажется меньше ts (t — произвольное положительное число). Эту вероятность, как функцию от t , называют функцией распределения Стьюдента с n - 1 степенями свободы и вычисляют по формуле

где постоянная Cn -1 выбрана таким образом, чтобы выполнялось условие: In -1 (¥) = 1. При больших n формулу (2) можно заменить формулой (1). Однако применение формулы (1) при небольших n привело бы к грубым ошибкам. Так, например, согласно (1), значению I = 0,99 соответствует t = 2,58; истинные значения t , определяемые при малых n как решения соответствующих уравнений ln -1 (t ) = 0,99, приведены в таблице:

n 2 3 4 5 10 20 30
t 63,66 9,92 5,84 4,60 3,25 2,86 2,76

Пример. Для определения массы некоторого тела произведено 10 независимых равноточных взвешиваний, давших результаты Yi г ):

Yi 18,41 18,42 18,43 18,44 18,45 18,46
ni 1 3 3 1 1 1

(здесь ni — число случаев, в которых наблюдался вес Yi , причём n = Sni , = 10). Так как все взвешивания равноточные, то следует положить pi = ni и в качестве оценки для неизвестного веса m, выбрать величину

Задавая, например, I 9 = 0,95, по таблицам распределения Стьюдента с девятью степенями свободы можно найти, что t = 2,262, и поэтому в качестве предельной абсолютной погрешности приближённого равенства m » 18,431 следует принять величину

  Т. о. 18,420 < m < 18,442.

  Случай нескольких неизвестных (линейные связи). Пусть n результатов измерений Y 1 , Y 2 ,..., Yn связаны с m неизвестными величинами x 1 , x 2 ,..., хm (m < n ) независимыми линейными отношениями

где aij — известные коэффициенты, а di — независимые случайные ошибки измерений. Требуется оценить неизвестные величины xj (эту задачу можно рассматривать как обобщение предыдущей, в которой m = x1 и m = ai1 = 1; i = 1,2,..., n ).

  Так как Е di = 0, то средние значения результатов измерений yi , = E yi . связаны с неизвестными величинами x 1 , x 2 ,..., хm линейными уравнениями (линейные связи):

  Следовательно, искомые величины xj представляют собой решение системы (4), уравнения которой предполагаются совместными. Точные значения измеряемых величин yi и случайные ошибки di обычно неизвестны, поэтому вместо систем (3) и (4) принято записывать так называемые условные уравнения

  Согласно Н. к. м., качестве оценок для неизвестных xj применяют такие величины Xj , для которых сумма квадратов отклонений

будет наименьшей (как и в предыдущем случае, pi — вес измерения Yi , — величина, обратно пропорциональная дисперсии случайной ошибки di ). Условные уравнения, как правило, несовместны, т. е. при любых значениях Xj разности

не могут, вообще говоря, все обратиться в нуль, и в этом случае

также не может обратиться в нуль. Н. к. м. предписывает в качестве оценок выбрать такие значения Xj , которые минимизируют сумму S . В тех исключительных случаях, когда условные уравнения совместны и, значит, обладают решением, это решение совпадает с оценками, полученными согласно Н. к. м.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии