Читаем Большая Советская Энциклопедия (ОБ) полностью

Обра'тная теоре'ма, теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением — условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны. Например, теоремы: «если два угла треугольника равны, то их биссектрисы равны» и «если две биссектрисы треугольника равны, то соответствующие им углы равны» — являются обратными друг другу. Из справедливости какой-нибудь теоремы, вообще говоря, не следует справедливость обратной к ней теоремы. Например, теорема: «если число делится на 6, то оно делится на 3» — верна, а О. т.: «если число делится на 3, то оно делится на 6» — неверна. Даже если О. т. верна, для её доказательства могут оказаться недостаточными средства, используемые при доказательстве прямой теоремы. Например, в евклидовой геометрии верны как теорема «две прямые на плоскости, имеющие общий перпендикуляр, не пересекаются», так и обратная к ней теорема «две непересекающиеся прямые на плоскости имеют общий перпендикуляр». Однако вторая (обратная) теорема основывается на евклидовой аксиоме параллельных, тогда как для доказательства первой эта аксиома не нужна. В Лобачевского геометриивторая просто неверна, тогда как первая остаётся в силе. О. т. равносильна теореме, противоположной к прямой, т. е. теореме, в которой условие и заключение прямой теоремы заменены их отрицаниями. Поэтому прямая теорема равносильна теореме, противоположной к обратной, т. е. теореме, утверждающей, что если неверно заключение прямой теоремы, то неверно и её условие. Известный способ «доказательства от противного» как раз и представляет собой замену доказательства прямой теоремы доказательством теоремы, противоположной к обратной. Справедливость обеих взаимно обратных теорем означает, что выполнение условия любой из них не только достаточно, но и необходимо для справедливости заключения (см. Необходимые и достаточные условия).

Обратная функция

Обра'тная фу'нкция, функция, обращающая зависимость, выражаемую данной функцией. Так, если у = f (x) — данная функция, то переменная х, рассматриваемая как функция переменной у, х = j (y), является обратной по отношению к данной функции у = f (x). Например, О. ф. для у = ax + b (а¹0) является х = (у—b)/a, О. ф. для у = ех является х = ln у и т.д. Если х = j(y) есть О. ф. по отношению к у = f (x), то и у = f (x) есть О. ф. по отношению к х = j(y). Областью определения О. ф. является область значений данной функции, а областью значений О. ф.— область определения данной. Графики двух взаимно обратных функций у = f (x) и у = j (x) (где независимое переменное обозначено одной и той же буквой х), как, например, у = ax + b и у = (х—b)/a, у = ех и у =  ln х, симметричны по отношению к биссектрисе у = х первого и третьего координатных углов. Функция, обратная по отношению к однозначной функии, может быть многозначной (ср., например, функции х2 и ). Для однозначности О. ф. необходимо и достаточно, чтобы данная функция у = f (x) принимала различные значения для различных значений аргумента. Для непрерывной функции последнее условие может выполняться только в том случае, если данная функция монотонна (имеются в виду функции действительного аргумента, принимающие действительные значения). О. ф. по отношению к непрерывной и монотонной функции однозначна, непрерывна и монотонна.

  Если данная функция кусочно монотонна, то, разбивая область её определения на участки её монотонности, получают однозначные ветви О. ф. Так, одним из участков монотонности для sin х служит интервал — p/2< x < p/2; ему соответствует т. н. главная ветвь arc sin х обратной функции Arc sin х. Для пары однозначных взаимно обратных функций имеют место соотношения j[f (x)]=x и f [j(x)] = х, первое из которых справедливо для всех значений х из области определения функции f (x), а второе — для всех значений х из области определения функции j (x); например, elnx= х (х > 0), 1n (ex) = х (— yen < х < yen). Иногда функцию, обратную к f (x) =у, обозначают f- -1(y) = х, так что для непрерывной и монотонной функции f (x):

  F -1[f (x)]=f [f  -1) x)]=x.

  Вообще же f --1[f (x)] представляет собой многозначную функцию от х, одним из значений которой является х; так, для f (x) = x2, х (¹ 0) является лишь одним из двух значений f --1[f (x)] = x2 (другое: —х); для f (x) = sin х, х является лишь одним из бесконечного множества значений

f- -1[f (x)] = Arc sin [sin x] = (—1) n x + np,

n = 0, ± 1, ± 2,....

  Если у = f (x) непрерывна и монотонна в окрестности точки х = x и дифференцируема при х = x, причём f'(x) ¹ 0, то f --1(y) дифференцируема при у = у и

Перейти на страницу:

Похожие книги

Психология любви и секса. Популярная энциклопедия
Психология любви и секса. Популярная энциклопедия

Любовь и секс занимают очень заметное место в жизни человечества. Из-за любви люди лишают себя жизни, пишут стихи, возводят дворцы и начинают войны. Из-за секса идут в тюрьмы и ломают себе жизнь.Ученые установили, что наша жизнь управляется четырьмя основными потребностями: самосохранения, размножения, общения и потребностью в информации. Однако сексуальную потребность все-таки называют «основным инстинктом».Сложность изучения любви заключается в том, что это явление представляет собой неделимый сплав биологии, психологии и культуры, и представители каждой из этих наук могут досконально разобраться только в одной стороне этого феномена, а в результате любовь все равно остается загадочной и непознанной. Книга, которую вы держите в руках, представляет собой еще одну попытку понять это чудо. Эту чуму, которую Бог наслал на людей за их грехопадение, а может быть в награду за их стремление к совершенству.

Юрий Викторович Щербатых

Семейные отношения, секс / Энциклопедии / Психология / Образование и наука / Словари и Энциклопедии