Обра'тная теоре'ма
, теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением — условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны. Например, теоремы: «если два угла треугольника равны, то их биссектрисы равны» и «если две биссектрисы треугольника равны, то соответствующие им углы равны» — являются обратными друг другу. Из справедливости какой-нибудь теоремы, вообще говоря, не следует справедливость обратной к ней теоремы. Например, теорема: «если число делится на 6, то оно делится на 3» — верна, а О. т.: «если число делится на 3, то оно делится на 6» — неверна. Даже если О. т. верна, для её доказательства могут оказаться недостаточными средства, используемые при доказательстве прямой теоремы. Например, в евклидовой геометрии верны как теорема «две прямые на плоскости, имеющие общий перпендикуляр, не пересекаются», так и обратная к ней теорема «две непересекающиеся прямые на плоскости имеют общий перпендикуляр». Однако вторая (обратная) теорема основывается на евклидовой аксиоме параллельных, тогда как для доказательства первой эта аксиома не нужна. ВОбратная функция
Обра'тная фу'нкция
, Если данная функция кусочно монотонна, то, разбивая область её определения на участки её монотонности, получают однозначные ветви О. ф. Так, одним из участков монотонности для sin
Если