Читаем Большая Советская Энциклопедия (ОБ) полностью

(формула дифференцирования О. ф.). Так, для —p/2 < х < p/2, у = f (x) = sin х непрерывна и монотонна, f’(x) = cos х ¹ 0 и f- -1(y)= arc sin у (—1< y <1) дифференцируема, причём

где имеется в виду положительное значение корня (так как cos х > 0 для —p/2 <  х <  p/2).

Обратно пропорциональные величины

Обра'тно пропорциона'льные величи'ны, две величины, связанные между собой так, что с увеличением (уменьшением) одной величины в несколько раз другая уменьшается (увеличивается) во столько же раз. О. п. в. х и у связаны соотношением ху = k (то есть х =  и у = , где k постоянно).

Обратное требование

Обра'тное тре'бование, см. Регрессный иск.

Обратное число

Обра'тное число', число, произведение которого с данным числом равно единице. Два таких числа называются взаимно обратными. Таковы, например, 5 и ,  и  и т.д. Для всякого числа а, не равного нулю, существует обратное .

Обратные гиперболические функции

Обра'тные гиперболи'ческие фу'нкции, функции, обратные по отношению к гиперболическим функциямsh х, ch х, th х; они выражаются формулами

 (*)

  (читается: ареа-синус гиперболический, ареа-косинус гиперболический, ареа-тангенс гиперболический). Эти обозначения происходят от лат. area — площадь (гиперболические функции могут рассматриваться как функции площади гиперболического сектора). Производные О. г. ф. имеют вид

,

,

.

  Поэтому О. г. ф. часто появляются при интегрировании рациональных дробей и квадратичных иррациональностей.

  О. г. ф., рассматриваемые в комплексной области, многозначны. Их однозначные ветви (главные значения) получаются, если в формулах (*) брать для логарифма его главные значения; они обозначаются ar sh z; ar ch z, ar th z. Главные значения О. г. ф. связаны с главными значениями обратных тригонометрических функций формулами

,

,

.

Обратные тригонометрические функции

Обра'тные тригонометри'ческие фу'нкции, аркфункции, круговые функции, решают следующую задачу: найти дугу (число) по заданному значению её тригонометрической функции. Шести основным тригонометрическим функциям соответствуют шесть О. т. ф.: 1) Arc sin х («арксинус x») — функция, обратная sin х; 2) Arc cos x («арккосинус x») — функция, обратная cos х; 3) Arc tg x («арктангенс x») — функция, обратная tg х; 4) Arc ctg x («арккотангенс x») — функция, обратная ctg x; 5) Arc sec x («арксеканс x») — функция, обратная sec x; 6) Arc cosec x («арккосеканс x») — функция, обратная cosec x. Согласно этим определениям, например, х = Arc sin a есть любое решение уравнения sin х = a, т.е. sin Arc sin a = a. Функции Arc sin x и Arc cos x определены (в действительной области) для |х| lb 1, функции Arc tg х и Arc ctg х — для всех действительных х, а функции Arc sec х и Arc cosec х:—для |х| ³ 1; две последние функции малоупотребительны.

  Так как тригонометрические функции периодические, то обратные к ним функции являются многозначными функциями. Определённые однозначные ветви (главные ветви) этих функций обозначаются так: arc sin х, arc cos x,..., arc cosec x. Именно, arc sin х есть та ветвь функции Arc sin х, для которой — p/2 lb arc sin х lb p/2. Аналогично, функции arc cos х, arc tg х и arc ctg х определяются из условий: 0 lb arc cos х lb p, — p/2 < arc tg x < p/2, 0 x < p. На рис. изображены графики функций у = Arc sin x, у = Arc cos x, у = Arc tg x, у = Arc ctg x; главные Arc cos x = ± arc cos x +2pn,ветви этих функций выделены жирной линией. О. т. ф. Arc sin х,... легко выражаются через arc sin x,..., например

n = 0, ±1, ±2, …

  Известные соотношения между тригонометрическими функциями приводят к соотношениям между О. т. ф., например из формулы

вытекает, что

Производные О. т. ф. имеют вид

О. т. ф. могут быть представлены степенными рядами, например

эти ряды сходятся для —1 lb x lb 1.

  О. т. ф. можно определить для произвольных комплексных значений аргумента; однако их значения будут действительными лишь для указанных выше значений аргумента. О. т. ф. комплексного аргумента могут быть выражены с помощью логарифмической функции, например

.

  Лит.: Новоселов С. И., Обратные тригонометрические функции, 3 изд., М., 1950.

Обратный клапан

Обра'тный кла'пан, устройство, пропускающее поток жидкости или газа по трубопроводу только в одном направлении и автоматически закрывающееся при перемене направления потока. Применяется в различных теплоэнергетических и технологических установках.

Обратный код

Обра'тный код, см. в статье Код в ЦВМ.

Обратный словарь

Перейти на страницу:

Похожие книги

Психология любви и секса. Популярная энциклопедия
Психология любви и секса. Популярная энциклопедия

Любовь и секс занимают очень заметное место в жизни человечества. Из-за любви люди лишают себя жизни, пишут стихи, возводят дворцы и начинают войны. Из-за секса идут в тюрьмы и ломают себе жизнь.Ученые установили, что наша жизнь управляется четырьмя основными потребностями: самосохранения, размножения, общения и потребностью в информации. Однако сексуальную потребность все-таки называют «основным инстинктом».Сложность изучения любви заключается в том, что это явление представляет собой неделимый сплав биологии, психологии и культуры, и представители каждой из этих наук могут досконально разобраться только в одной стороне этого феномена, а в результате любовь все равно остается загадочной и непознанной. Книга, которую вы держите в руках, представляет собой еще одну попытку понять это чудо. Эту чуму, которую Бог наслал на людей за их грехопадение, а может быть в награду за их стремление к совершенству.

Юрий Викторович Щербатых

Семейные отношения, секс / Энциклопедии / Психология / Образование и наука / Словари и Энциклопедии