и развивая работы Гримальди и Гука, исходил из аналогии между многими акустическими и оптическими явлениями. Он полагал, что световое возбуждение есть импульсы упругих колебаний эфира, распространяющиеся с большой, но конечной скоростью (Кеплер и Декарт считали скорость света бесконечной, Ньютон и Гук — конечной; впервые её величину экспериментально определил в 1676 О. Рёмер
, см. Скорость света
). Наибольшим вкладом Гюйгенса в О., не потерявшим ценности до сих пор, является Гюйгенса — Френеля принцип
, согласно которому каждая точка фронта волнового возбуждения может рассматриваться как источник вторичных (сферических) волн; огибающая
(поверхность) вторичных волн представляет собой фронт реальной распространяющейся волны в последующие моменты времени. Опираясь на этот принцип, Гюйгенс дал волновое истолкование законов отражения и преломления. Из его теории следовало правильное выражение для показателя преломления: n21
= u1
/u2
(где u1
и u2
— скорости света в 1-й и 2-й средах), в то время как у Ньютона (и Гука) получалось обратное (не соответствующее действительности) отношение u2
/u1
. Гюйгенс объяснил также двойное лучепреломление. Говоря о световых волнах, Гюйгенс не придавал им буквального смысла и не пользовался понятием длины волны. Он игнорировал явление дифракции, считая, что свет распространяется прямолинейно даже через сколь угодно малое отверстие, и не рассматривал поляризацию света. Не упоминает он и об описанных в 1675 Ньютона кольцах
— интерференционном эффекте, прямо свидетельствовавшем о периодичности световых колебаний, а не об их импульсном, как он полагал, характере. Т. о., сформулировав фундаментальный принцип волновой О., Гюйгенс не разработал последовательную волновую теорию света, которая выдержала бы противопоставление воззрениям Ньютона. По этой причине и вследствие большого научного авторитета Ньютона корпускулярная «теория истечения» последнего (её приверженцы придали ей категоричность, не свойственную высказываниям самого Ньютона) сохраняла господствующее положение в О. до начала 19 в., хотя некоторые крупные учёные, например Л. Эйлер
и М. В. Ломоносов
, отдавали предпочтение волновым представлениям о природе света. Путь к победе волновой О. открыли работы Т. Юнга
и О. Френеля
. В 1801 Юнг сформулировал принцип интерференции, позволивший ему объяснить цвета тонких плёнок (см. Полосы равной толщины
) и послуживший основой для понимания всех интерференционных явлений. Опираясь на этот принцип, Френель по-новому истолковал принцип Гюйгенса и не только дал удовлетворительное волновое объяснение прямолинейности распространения света, но и объяснил многочисленные дифракционные явления. В опытах Френеля и Д. Араго
было установлено, что волны, поляризованные перпендикулярно друг другу, не интерферируют; это дало основания Юнгу и (независимо) Френелю высказать существенно важную идею о поперечности световых колебаний, исходя из которой Френель построил волновую теорию кристаллооптических явлений. Т. о., все известные к тому времени оптические явления получили волновую интерпретацию. Однако и в этом «триумфальном шествии» были трудности, т.к. детальная разработка представлений о свете, как поперечных упругих колебаниях эфира, приводила к необходимости искусственных теоретических построений (так, эфир приходилось наделять свойствами твёрдого тела, в котором, тем не менее, могли свободно перемещаться тела). Эти трудности были радикально разрешены лишь при последовательном развитии учения Дж. К. Максвелла
об электромагнитном поле. Максвелл, исходя из открытий М. Фарадея
, пришёл к выводу, что свет представляет собой не упругие, а электромагнитные волны. Позже, в начале 20 в. выяснилось, что для их распространения не нужен эфир.