Первым указанием на непосредственную связь электромагнетизма с О. было открытие Фарадеем (1846) вращения плоскости поляризации
света в магнитном поле (Фарадея эффекта
). Далее было установлено, что отношение электромагнитной и электростатической единиц силы тока
по абсолютной величине и размерности совпадает со скоростью света с
(В. Вебер
и Ф. Кольрауш
, 1856). Максвелл теоретически показал, а Г. Герц
в 1888 подтвердил экспериментально, что изменения электромагнитного поля распространяются в вакууме именно с этой скоростью. В прозрачный среде скорость света u
= c/n
= c/
, т. е. определяется диэлектрической и магнитной проницаемостями среды. Вначале не удавалось объяснить в рамках электромагнитной теории известные к тому времени зависимости показателя преломления n
от длины волны l излучения, используя взятые из опыта значения e и m. Со времён Ньютона была известна нормальная дисперсия — возрастание n
с уменьшением l. С позиций упругой волновой теории света она была объяснена Френелем и О. Коши
. Но в 1862 французский физик Ф. Леру обнаружил участок дисперсионной кривой, на котором n
увеличивался с ростом l. Впоследствии А. Кундт
показал, что такая (аномальная) дисперсия свойственна очень многим веществам и связана с поглощением ими света. Возникло представление о веществе как совокупности упругих осцилляторов
(резонаторов), с которыми взаимодействует свет (В. Зельмейер, 1872). Развивая эту идею и рассматривая влияние вынужденных колебаний
осцилляторов под действием света на скорость его распространения, Г. Гельмгольц
(1874) дал полную теорию дисперсии в рамках «упругой» теории света. В 90-х гг. 19 в. П. Друде
, Гельмгольц и в особенности Х. Лоренц
при построении электронной теории вещества объединили идею об осцилляторах и электромагнитную теорию света. Плодотворное представление об электронах, которые входят в состав атомов и молекул и способны совершать в них колебания, позволило описать многие оптические явления, в том числе нормальную и аномальную дисперсию, т.к. в электронной теории значение e зависит от частоты (длины волны) электромагнитного поля. Наиболее точные опыты по аномальной дисперсии (Д. С. Рождественский
, 1912) дали результаты, хорошо согласующиеся с предсказаниями электронной теории. Блестящим подтверждением представлений о том, что излучение и поглощение света определяется поведением электронов в атомах, явилось открытие в 1896 П. Зееманом
и истолкование в 1897 Лоренцем действия магнитного поля на частоты излучения и поглощения атомов (Зеемана эффекта
). В полном согласии с теорией Максвелла оказалась и величина давления света, мысль о котором впервые высказал в 1619 Кеплер для объяснения отклонения хвостов комет в сторону от Солнца. В земных условиях величина этого давления была впервые измерена П. Н. Лебедевым
в 1899. Построение электромагнитной теории света и дополнение её электронной теорией взаимодействия света и вещества явилось следующим (после победы волновой теории в начале 19 в.) существенным шагом в развитии О.
Электромагнитная теория света стала отправным пунктом при создании относительности теории
. Экспериментальными основаниями для этого были данные оптических опытов с движущимися средами и движением наблюдателя относительно источника излучения, противоречившие теоретическим представлениям. Юнг в 1804 показал, что волновая теория требует для объяснения явления аберрации света
неподвижного, не увлекаемого Землёй эфира. Напротив, Френель в 1818 нашёл, что для независимости показателя преломления тел от их движения (наблюдения Араго, 1810) необходимо, чтобы тела частично увлекали эфир. Этот вывод был подкреплен Физо опытом
.Электродинамика движущихся сред
, развитая Лоренцем (1896) в рамках электронной теории, также приводила к частичному увлечению эфира. Однако классический Майкельсона опыт
, впервые выполненный в 1881 и неоднократно повторявшийся со всё большей точностью, не обнаружил такого увлечения («эфирного ветра»). Этот и ряд др. опытов, противоречивших представлениям о среде — переносчике электромагнитных колебаний, нашли своё объяснение в созданной А. Эйнштейном
специальной (частной) теории относительности (1905), приведшей к кардинальному пересмотру многих положений классической физики и. в частности, окончательно устранившей необходимость в эфире — гипотетической среде-переносчике света.