Объекты, с которыми имеет дело техника, обычно снабжены «рулями» — с их помощью человек управляет движением. Математически поведение такого объекта описывается некоторыми уравнениями, куда входят и управляющие параметры, характеризующие положение «рулей». Естественно, возникает вопрос об отыскании наилучшего (оптимального) в том или ином смысле управления движением. Например, речь может идти о достижении цели движения за минимальное время. Этот вопрос является задачей
Уже само зарождение (в начале 50-х гг. 20 в.) О. у. представляет собой яркий пример того, как запросы практики с неизбежностью порождают новые теории. Для новейшей техники и современного высокомеханизированного и автоматизированного производства характерно стремление выбирать наилучшую программу действий, наиболее рационально использовать имеющиеся ресурсы. Именно эти конкретные технические задачи стимулировали разработку теории О. у., оказавшейся математически очень содержательной и позволившей решить многие задачи, к которым классические методы были неприменимы. Интенсивное развитие теории О. у., в свою очередь, оказалось мощным фактором, способствующим успешному решению научно-технических и народнохозяйственных задач.
Центральным результатом теории О. у.. является принцип максимума Понтрягина, дающий общее необходимое условие оптимальности управления. Этот результат и связанные с ним исследования, проведённые Л. С.
В общих чертах задача О. у. состоит в следующем. Рассмотрим управляемый объект, под которым понимается некоторая машина, прибор или процесс, снабжённые «рулями». Манипулируя «рулями» (в пределах имеющихся ресурсов управления), мы тем самым определяем движение объекта, управляем им. Например, технологический процесс осуществления химической реакции можно считать управляемым объектом, «рулями» которого являются концентрации ингредиентов, количество катализатора, поддерживаемая температура и др. факторы, влияющие на течение реакции. Для того чтобы знать, как именно ведёт себя объект при том или ином управлении, необходимо иметь закон движения, описывающий динамические свойства рассматриваемого объекта и устанавливающий для каждого избираемого правила манипулирования «рулями» эволюцию состояния объекта. Возможности управлять объектом лимитируются не только ресурсами управления, но и тем, что в процессе движения объект не должен попадать в состояния, физически недоступные или недопустимые с точки зрения конкретных условий его эксплуатации. Так, осуществляя манёвр судном, необходимо учитывать не только технической возможности самого судна, но и границу фарватера.
Имея дело с управляемым объектом, всегда стремятся так манипулировать «рулями», чтобы, исходя из определенно начального состояния, в итоге достичь
некоторого желаемого состояния. Например, для запуска ИСЗ необходимо рассчитать режим работы двигателей ракеты-носителя, который обеспечит доставку спутника на желаемую орбиту. Как правило, существует бесконечно много способов управлять объектом так, чтобы реализовать цель управления. В связи с этим возникает задача найти такой способ управления, который позволяет достичь желаемого результата наилучшим, оптимальным образом в смысле определённого критерия качества; в конкретных задачах часто требуется реализовать цель управления за наименьшее возможное время или с минимальным расходом горючего, или с максимальным экономическим эффектом и т.п.В качестве типичного можно привести управляемый объект, закон движения которого описывается системой обыкновенных дифференциальных уравнений
где