В результате мокрого обогащения металлоносных песков и хромитовых П. р. получают шлих «сырой» платины — платиновый концентрат с 70—90% минералов платиновых металлов, а в остальном состоящий из хромитов, форстеритов, серпентинов и др. Такой платиновый концентрат отправляется на аффинаж
. Обогащение комплексных сульфидных П. р. осуществляется флотацией с последующей многооперационной пирометаллургической, электрохимической и химической переработкой. Главные страны, добывающие П. р., — СССР, ЮАР и Канада. Мировые запасы платиновых металлов (без СССР) оцениваются около 7000 т
(1972), в том числе ЮАР — 6200 т, Канады — около 500 т, Колумбии — 155 т, США —93 т. В 1972 было добыто платиновых металлов (в т): в ЮАР — 45,2, Канаде — 12,4, Колумбии — 0,8, США — 0,5 (суммарная мировая добыча 59 т). Основными промышленными месторождениями П. р. являются: в ЮАР месторождения горизонта Меренского (Бушвелдский комплекс), в Канаде — Садбери (провинция Онтарио) и Томпсон-Уобоуден (Манитоба), в Колумбии — россыпи бассейна р. Чоко, в США — россыпи Аляски и сульфидные месторождения меди. Лит.:
Афанасьева Л. И., Металлы платиновой группы, в сборнике: Минеральные ресурсы промышленно-развитых капиталистических и развивающихся стран, М., 1972; Разин Л. В., Месторождения платиновых металлов, в кн.: Рудные месторождения СССР, т. 3, М., 1974; Масленицкий И. Н., Чугаев Л. В., Металлургия благородных металлов, М., 1972. Л. В. Разин.
Платиновые сплавы
Пла'тиновые спла'вы
, сплавы (обычно двойные) на основе платины; представляют собой, как правило, твёрдый раствор легирующего элемента в платине. Важнейшие легирующие элементы в П. с. — металлы VIII группы периодической системы Менделеева Rh, lr, Pd, Ru, Ni и Co, а также Cu, W, Мо. П. с. характеризуются высокой температурой плавления, коррозионной стойкостью во многих агрессивных средах, в частности большим сопротивлением окислению при повышенных температурах, а также высокими механическими свойствами и износоустойчивостью. Некоторые П. с. обладают каталитическим действием (см. Катализ) в химических реакциях окисления, гидрогенизации, изомеризации и др. Большинство П. с. хорошо поддаются обработке давлением; изделия из них могут быть получены ковкой, прокаткой, волочением и штамповкой. П. с. применяют для изготовления термопар (5—40% Rh), разрывных и скользящих контактов (10—25% Rh или 5—15% Ru, или 5—30% lr, или 10—20% Pd, или 5% Ni), деталей малогабаритных приборов ответственного назначения: потенциометров (4—8% W или 3—10% Cu, или 10—20% lr, или 10% Ru, или 5—10% Mo), пружин и пружинящих элементов (25—30% Ir), постоянных магнитов (23% Со), а также высокотемпературных припоев (10—20% Pd). П. с. используются в качестве катализаторов
в реакциях окисления аммиака в азотную кислоту и синтеза синильной кислоты из аммиака и метана (5—10% Rh или 3—5% Pd и 3—5% Rh), нерастворимых анодов (5% lr или 20—50% Pd), материала для стеклоплавильных сосудов и фильер для производства вискозного волокна (3—10% Rh), лабораторной посуды и аппаратуры (1—30% Rh или 5% lr, или 10% Ru) и нагревателей высокотемпературных печей (10—40% Rh). И. А. Рогельберг.
Платинотрон
Платинотро'н
[от греч. Platýno — делаю шире, расширяю и (элек)трон], магнетронного типа прибор обратной волны для широкополосного усиления и генерирования электромагнитных колебаний СВЧ. Изобретён в 1949 американским инженером У. Брауном. Наиболее часто П. используют как усилитель и называют амплитроном; П. вместе с дополнительными устройствами для создания положительной обратной связи, работающий как генератор, называется стабилотроном. П. отличается от магнетрона тем, что его система резонаторов разомкнута (рис. 1). Однако электронный поток П. замкнут, и П. усиливает колебания лишь тех частот, при которых выполняется условие синхронизма между электромагнитным полем волны, бегущей вдоль системы резонаторов, и электронным потоком. Амплитудно-частотная характеристика П. в полосе рабочих частот почти равномерна, фазочастотная характеристика близка к линейной, а амплитудная характеристика (рис. 2) нелинейна. П. применяют в передающих устройствах радиолокационных станций, систем связи, навигации и телеметрии для усиления частотно- или фазомодулированных сигналов на частотах от 0,5 до 10 Ггц.
Промышленностью выпускаются П. на различные выходные мощности — от нескольких квт до нескольких десятков Мвт в импульсном режиме работы и от нескольких десятков вт до 100 квт в непрерывном режиме. Полоса рабочих частот П. составляет ~10% от средней частоты при коэффициенте усиления 7—17 дб. П. обладают высоким кпд — до 70—80%. В. И. Индык, О. И. Обрезан.
Рис. 2. Зависимость выходной мощности и коэффициента усиления платинотрона от входной мощности при различных значениях мощности питания P0
.