Читаем Большая Советская Энциклопедия (ПО) полностью

  Лит.: Мелвин-Хьюз Э. А., Физическая химия, пер. с англ., кн. 2, М., 1962, с. 807; Курс физической химии, под ред. Я. И. Герасимова, 2 изд., т. 1, М. — Л., 1969; Успехи коллоидной химии, под ред. П. А. Ребиндера и Г. И. Фукса, М., 1973; Гиббс Д ж. В., Термодинамические работы, пер. с англ.. М. — Л., 1958; Русанов А. И., Фазовые равновесия и поверхностные явления. Л,, 1967; Межфазовая граница газ — твёрдое тело, пер. с англ., М., 1970; Дерягин Б. В., Кротова Н. А., Смилга В. П., Адгезия твёрдых тел, М., 1973; 3имон А. Д., Адгезия жидкости и смачивание, М., 1974; Семенченко В. К., Поверхностные явления в металлах и сплавах, М.. 1957; Recent progress in surface science, ed by J. F. Danielli [a. o.], v. 1—5, N. Y. — L., 1964—72. См. также лит. при статьях Коллоидная химия , Поверхностное натяжение . Васильев Ю. М., Маленков А. Г., Клеточная поверхность и реакции клеток, Л., 1968; Пасынский А. Г., Биофизическая химия, 2 изд., М., 1968; Surface phenomena in chemistry and biology, L. — [a. o.], 1958; Surface chemistry of biological systems, N. Y. — L., 1970.

Поверхностный интеграл

Пове'рхностный интегра'л , интеграл от функции, заданной на какой-либо поверхности. К П. и. приводит, например, задача вычисления массы, распределённой по поверхности S с переменной поверхностной плотностью f (M ). Для этого разбивают поверхность на части s1 , s2 ,..., sn и выбирают в каждой из них по точке Mi . Если эти части достаточно малы, то их массы приближённо равны f (Mi ) si , а масса всей поверхности будет равна . Это значение тем ближе к точному, чем меньше части si . Поэтому точное значение массы поверхности есть

,

где предел берётся при условии, что размеры всех частей si (и их площади) стремятся к нулю. К аналогичным пределам приводят и другие задачи физики. Эти пределы называют П. и. первого рода от функции f (M ) по поверхности S и обозначают

.

  Их вычисление приводится к вычислению двойных интегралов (см. Кратный интеграл ).

  В некоторых задачах физики, например при определении потока жидкости через поверхность S, встречаются пределы аналогичных сумм с той лишь разницей, что вместо площадей самих частей стоят площади их проекций на три координатные плоскости. При этом поверхность S предполагается ориентированной (т. е. указано, какое из направлений нормалей считается положительным) и площадь проекции берётся со знаком + или — в зависимости от того, является ли угол между положительным направлением нормали и осью, перпендикулярной плоскости проекций, острым или тупым. Пределы сумм такого вида называют П. и. второго рода (или П. и. по проекциям) и обозначают

.

  В отличие от П. и. первого рода, знак П. и. второго рода зависит от ориентации поверхности S.

  М. В. Остроградский установил важную формулу, связывающую П. и. второго рода по замкнутой поверхности S с тройным интегралом по ограниченному ею объёму V (см. Остроградского формула ). Из этой формулы следует, что если функции Р, Q, R имеют непрерывные частные производные и в объёме V выполняется тождество

,

то П. и. второго рода по всем поверхностям, содержащимся в V и имеющим один и тот же контур, равны между собой. В этом случае можно найти такие функции P1 , Q1 , R1 , что

, , .

  Стокса формула выражает криволинейный интеграл по замкнутому контуру через П. и. второго рода по ограниченной этим контуром поверхности.

  Лит.: Никольский С. М., Курс математического анализа, т. 2, М., 1973: Ильин В. А., Позняк Э. Г., Основы математического анализа, ч. 2, М., 1973; Кудрявцев Л. Д., Математический анализ, 2 изд., т. 2, М., 1973.

Поверхностный слой

Перейти на страницу:

Похожие книги