Читаем Большая Советская Энциклопедия (ПО) полностью

где e и m— диэлектрическая и магнитная проницаемости среды. При использовании условия (3) уравнения для П. э. п. в однородной среде (e = const, m = const), получаемые из уравнений Максвелла, приобретают одинаковую форму:

,     (4)

;

здесь D—Лапласа оператор , r и j — плотности заряда и тока, a u =  — скорость распространения электромагнитного поля в среде. Если r = 0 и j = 0, то П. э. п. удовлетворяют волновым уравнениям .

  Уравнения (4) позволяют определить потенциалы А и j по известному распределению зарядов и токов, а следовательно, с помощью формул (1) — характеристики электромагнитного поля В и Е. Частные решения уравнений (4), удовлетворяющие причинности принципу , называют запаздывающими потенциалами. Запаздывающие потенциалы в точке с координатами х, у, z в момент времени t определяются плотностями заряда и тока в точке с координатами х’, у’, z' в предшествующий момент времени t = t — R/ u, где

расстояние от источника поля до точки наблюдения.

  Если заряды и токи распределены в конечной области пространства G, то запаздывающие потенциалы определяются суммированием (интегрированием) элементарных потенциалов от зарядов и токов, сосредоточенных в бесконечно малых объёмах dx'dy'dz’, с учётом времени запаздывания:

j (х, у, z, t ) = ,

A (х, у, z, t ) = ,

  Через П. э. п. выражается функция Гамильтона Н заряженной частицы, движущейся в электромагнитном поле:

,     (6)

где p — импульс частицы, e и m — ее заряд и масса. Соответственно через П. э. п. выражается оператор Гамильтона (гамильтониан) в квантовой механике .

  Лит. см. при ст. Максвелла уравнения .

  Г. Я. Мякишев.

Потенциальная энергия

Потенциа'льная эне'ргия, часть общей механической энергии системы, зависящая от взаимного расположения частиц, составляющих эту систему, и от их положений во внешнем силовом поле (например, гравитационном; см. Поля физические ). Численно П. э. системы в данном её положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где П. э. условно принимается равной нулю (П = 0). Из определения следует, что понятие П. э. имеет место только для консервативных систем , т. е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы. Так, для груза весом Р, поднятого на высоту h, П. э. будет равна П = Ph (П = 0 при h = 0); для груза, прикрепленного к пружине, П = 0,5с l2 , где l — удлинение (сжатие) пружины, с — её коэффициент жёсткости (П = 0 при l = 0); для двух частиц с массами m1 и m2 , притягивающихся по закону всемирного тяготения, П = —fm1 m2 /r, где f — гравитационная постоянная, r — расстояние между частицами (П = 0 при r = ¥); аналогично определяется П. э. двух точечных зарядов e1 и e2 .

  С. М. Тарг.

Потенциальная яма

Потенциа'льная я'ма в физике, ограниченная область пространства, в которой потенциальная энергия частицы меньше, чем вне её. Термин «П. я.» происходит от вида графика, изображающего зависимость потенциальной энергии V частицы, находящейся в силовом поле, от её положения в пространстве (в случае одномерного движения — от координаты х; рис. 1 ). Такая форма зависимости V (x ) возникает в поле сил притяжения. Характеристики П. я. — ширина (расстояние, на котором проявляется действие сил притяжения) и глубина (равная разности потенциальных энергий частицы на «краю» ямы и на её «дне», соответствующем минимальной потенциальной энергии). Основное свойство П. я. — способность удерживать частицу, полная энергия E которой меньше глубины ямы V0 ; такая частица внутри П. я. будет находиться в связанном состоянии .

  В классической механике частица с энергией E < V0 не сможет вылететь из П. я. и будет всё время двигаться в ограниченной области пространства внутри ямы; устойчивому равновесию отвечает положение частицы на «дне» ямы (оно достигается при кинетической энергии частицы Екин = E V = 0). Если же E > V0 , то частица преодолеет действие сил притяжения и покинет яму. Примером может служить движение упругого шарика, находящегося в поле сил земного притяжения, в чашке с пологими стенками (рис. 2 ).

Перейти на страницу:

Похожие книги