Исторически понятие о П. явилось следствием логического анализа высказываний естественного языка, т. е. выяснения их логической структуры, выяснения того, какой логикой может быть выражен (формализован) смысл этих высказываний. Идея выделения логической структуры речи, в отличие от грамматической, для нужд логической дедукции принадлежит Аристотелю. В аристотелевской и в последующей «традиционной» логике П. понимался в узком смысле как один из двух терминов суждения, а именно тот, в котором нечто говорится о предмете речи — субъекте. Форма сказывания — предикативная связь — сводилась при этом к атрибутивной связи, т. е. выражала «присущность» предмету некоторого признака. Аристотель выделял 4 типа признаков, способных играть роль П.: родовые, видовые, собственные и случайные. Это т. н. предикабилии — типы сказуемых.
Логический анализ фраз естественного языка на том уровне представлений о логической дедукции, который был характерен для аристотелевской (и традиционной) логики, ограничивался, т. о., для выражения смысла высказываний логикой одноместных П. (логикой свойств в узком смысле). Это существенно ослабляло «выразительные возможности» логики и служило препятствием для адекватной формализации тех объективных связей между предметами, которые, будучи мыслимыми в виде отношений (свойств в широком смысле) между соответствующими понятиями, лежат в основе логической правильности умозаключений об отношениях — основных умозаключений в науке. Устранение указанного препятствия и усиление выразительных средств формализма современной логики связано, в частности, с восходящей к работе Г. Фреге «Исчисление понятий» (1879) новой трактовкой П. Главная идея этой трактовки — рассмотрение отношения предикации как частного случая функциональной зависимости. Это обеспечивает более ёмкое, чем аристотелевское, отображение смысловой структуры фраз естественного языка в формализме субъектно-предикатного типа и одновременно дальнейшее развитие самого этого формализма на пути сближения языков логики и математики.
Основой для «функциональной» точки зрения на П. служат в естественных и в искусственных (точных) языках выражения вида повествовательных предложений, содержащие неопределённые термины — неопределённые имена предметов: переменные (параметры) в записи утверждений в математическом языке, например х
+ 2 = 4; слова «нечто», «некто», «кто-либо» и пр., играющие в естественном языке роль переменных в выражениях типа: «Некто человек», «Кто-то любит кого-то», «Если кто-либо человек, то он смертен» и т.п. Записав эти выражения некоторым единым способом, например заменяя неопределённые термины пробелами, аналогично тому, как это делается в опросных бланках, «—+ 2 = 4», «—человек», «— любит —», «Если — человек, то — смертен», или же принимая запись с помощью переменных в качестве основной, «x + 2 = 4», «x человек», «х
любит у
», «Если х
человек, то х
смертен», легко заметить нечто общее между ними. Во-первых, наличие неопределённых терминов делает эти и подобные им выражения, вообще говоря, неопределёнными как в смысле того, что в них утверждается, так и в смысле их истинностного значения
;
во-вторых, всякое подходящее указание на область значений неопределённых терминов и одновременная квантификация или замена неопределённых терминов их значениями преобразует соответствующие выражения в осмысленные высказывания. В современной логике выражения, имеющие вид повествовательных предложений и содержащие неопределённые термины, получили общее название пропозициональных функций, или, сохраняя традиционный термин, П. Как и числовые функции, П. являются соответствиями. Неопределённые термины играют в них обычную роль аргументов функции, но, в отличие от числовых функций, значениями П. служат высказывания. В общем случае, отвлекаясь от какого-либо определённого языка и сохраняя только функциональную форму записи, П. от n
переменных (от n
неопределенных терминов) выражают формулой P
(x1
,..., xn
),
где n
³ 0.
При n
= 0 П. совпадает с высказыванием, при n
= 1 П. будет свойством в узком смысле (1-местным П.), при n
= 2 — свойством «пары» (2-местным П., или бинарным отношением), при n
= 3 —
свойством «тройки» (3-местным П., или тернарным отношением) и т.д. Выражения: «x
+ 2 = 4», «х
человек», «х
любит y», «х
сын у
и z
» служат соответственно примерами 1-местного, 2-местного и 3-местного П. Они преобразуются в высказывания либо при надлежащей подстановке, например «2 + 2 = 4», «Сократ — человек», «Ксантиппа любит Сократа», «Софрониск — сын Ксантиппы и Сократа», либо при связывании переменных кванторными словами, например «$х
(х
+ 2 = 4)» (существует число, которое в сумме с 2 даёт 4), «$ (х —
человек)» (существуют люди), «"x$y$z (х
сын у
и z
)>> (каждый является сыном по крайней мере двух родителей) и т.п., имея в виду, что области значений переменных в первом случае — числа, во втором — живые существа, в третьем — люди. (Подробнее о квантификации см. Квантор
.
)