Предварительное представление о форме графика зависимости g
(x) от х можно получить по расположению на диаграмме рассеяния (называемой также корреляционным полем, если обе переменные случайные) точек (xi, (xi)), где (xi) — средние арифметические тех значений у, которые соответствуют фиксированному значению xi. Например, если расположение этих точек близко к прямолинейному, то допустимо использовать в качестве приближения линейную регрессию. Стандартный метод оценки линии регрессии основан на использовании полиномиальной модели (m ³ 1)y
(x, b) = b0 + b1x + ... + bmxm(этот выбор отчасти объясняется тем, что всякую непрерывную на некотором отрезке функцию можно приблизить полиномом с любой наперёд заданной степенью точности). Оценка неизвестных коэффициентов регрессии b0
, ..., bm и неизвестной дисперсии s2 осуществляется наименьших квадратов методом. Оценки параметров b0, ..., bm, полученные этим методом, называются выборочными коэффициентами регрессии, а уравнение
определяет т. н. эмпирическую линию регрессии. Этот метод в предположении нормальной распределённости результатов наблюдений приводит к оценкам для b0
, ..., bm и s2, совпадающим с оценками наибольшего правдоподобия (см. Максимального правдоподобия метод). Оценки, полученные этим методом, оказываются в некотором смысле наилучшими и в случае отклонения от нормальности. Так, если проверяется гипотеза о линейной регрессии, то, ,
где и — средние арифметические значений xi
и yi, и оценка будет несмещенной для g(х), а её дисперсия будет меньше, чем дисперсия любой другой линейной оценки. При допущении, что величины yi нормально распределены, наиболее эффективно осуществляется проверка точности построенной эмпирической регрессионной зависимости и проверка гипотез о параметрах регрессионной модели. В этом случае построение доверительных интервалов для истинных коэффициентов регрессии b0, ..., bm и проверка гипотезы об отсутствии регрессионной связи bi = 0, i = 1, ..., m) производится с помощью Стьюдента распределения.В более общей ситуации результаты наблюдений y
1, ..., yn рассматриваются как независимые случайные величины с одинаковыми дисперсиями и математическими ожиданиямиEyi
, = b1 x1i + ... + bkxki, i = 1, ..., n,где значения xji
, j = 1, ..., k предполагаются известными. Эта форма линейной модели регрессии является общей в том смысле, что к ней сводятся модели более высоких порядков по переменным x1, ..., xk. Кроме того, некоторые нелинейные относительно параметров bi; модели подходящим преобразованием также сводятся к указанной линейной форме. Р. а. является одним из наиболее распространённых методов обработки результатов наблюдений при изучении зависимостей в физике, биологии, экономике, технике и др. областях. На модели Р. а. основаны такие разделы математической статистики, как дисперсионный анализ
и планирование эксперимента; модели Р. а. широко используются в статистическом анализе многомерном.
Лит.:
Юл Дж. Э., Кендэл М. Дж., Теория статистики, пер. с англ., 14 изд., М., 1960; Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики для технических приложений, 3 изд., М., 1969; Айвазян С. А., Статистическое исследование зависимостей, М., 1968; Рао С. Р., Линейные статистические методы и их применения, пер. с англ., М., 1968. См. также лит. при ст. Регрессия. А. В. Прохоров.
Регрессия (математич.)
Регре'ссия
в теории вероятностей и математической статистике, зависимость среднего значения какой-либо величины от некоторой другой величины или от нескольких величин. В отличие от чисто функциональной зависимости у = f(х), когда каждому значению независимой переменной х соответствует одно определённое значение величины у, при регрессионной связи одному и тому же значению х могут соответствовать в зависимости от случая различные значения величины у. Если при каждом значении х = xi наблюдается ni, значений yi1, ..., величины у, то зависимость средних арифметических от xi и является Р. в статистическом понимании этого термина. Примером такого рода зависимости служит, в частности, зависимость средних диаметров сосен от их высот; см. табл. в ст. Корреляция.Изучение Р. в теории вероятностей основано на том, что случайные величины Х
и Y, имеющие совместное распределение вероятностей, связаны вероятностной зависимостью: при каждом фиксированном значении Х = х величина Y является случайной величиной с определённым (зависящим от значения х) условным распределением вероятностей. Р. величины Y по величине Х определяется условным математическим ожиданием Y, вычисленным при условии, что Х = х:Е(Y
êх) = u(х).