Другим примером «самосогласования» в физике твёрдого тела является своеобразное поведение электрона в ионном непроводящем кристалле. Электрон своим полем поляризует окружающую среду, причём поляризация, связанная со смещением ионов, создаёт потенциальную яму
, в которую попадает сам электрон. Такое «самосогласованное» состояние электрона и диэлектрической среды называется поляроном. Полярон может перемещаться по кристаллу и является носителем тока в ионных кристаллах. На основе теории поляронов интерпретируются электрические, фотоэлектрические и многие оптические явления в этих кристаллах. Исторически первым вариантом С. п. было так называемое молекулярное поле, введённое в 1907 французским физиком П. Вейсом для объяснения ферромагнетизма
. Вейс предположил, что магнитный момент каждого атома ферромагнетика находится ещё во внутреннем молекулярном поле, которое само пропорционально магнитному моменту и, т. о., самосогласованно. В действительности это поле выражает на языке самосогласованного приближения квантовое обменное взаимодействие. Это можно понять, если применить к системе взаимодействующих спинов ферромагнетика метод С. п., который в этом случае называется приближением метода молекулярного поля. При этом обменное взаимодействие данного спина со всеми прочими заменяется действием некоторого эффективного молекулярного поля, которое вводится самосогласованным образом. Лит.:
Ферми Э., Молекулы и кристаллы, пер. с нем., М., 1947; Хартри Д., Расчёты атомных структур, пер. с англ., М., 1960; Фок В. А., Многоэлектронная задача квантовой механики и строение атома, в кн.: Юбилейный сборник, посвященный тридцатилетию Великой Октябрьской социалистической революции, ч. 1, М. — Л., 1947, с. 255—84; Гомбаш П., Проблема многих частиц в квантовой механике (Теория и методы решения), пер. с нем., 2 изд., М., 1953; Боголюбов Н. Н., Толмачев В. В., Ширков Д. В., Новый метод в теории сверхпроводимости, М., 1958, с. 122—26; Харрисон У., Псевдопотенциалы в теории металлов, пер. с англ., М., 1968; Пекар С. И., Исследования по электронной теории кристаллов, М. — Л., 1951; Смарт Дж., Эффективное поле в теории магнетизма, пер. с англ., М., 1968; Тябликов С. В., Методы квантовой теории магнетизма, М., 1965, с. 178—98; Киржниц Д. А., Полевые методы теории многих частиц, М., 1963. Д. Н. Зубарев.
Самосознание
Самосозна'ние,
осознание, оценка человеком своего знания, нравственного облика и интересов, идеалов и мотивов поведения, целостная оценка самого себя как деятеля, как чувствующего и мыслящего существа. С. свойственно не только индивиду, но и обществу, классу, социальной группе, когда они поднимаются до понимания своего положения в системе производственных отношений, своих общих интересов и идеалов. В С. человек выделяет себя из всего окружающего мира, определяет своё место в круговороте природных и общественных событий. С. тесно связано с рефлексией, где оно поднимается на уровень теоретического мышления. С. формируется на определённой ступени развития личности под влиянием образа жизни, который требует от человека самоконтроля собственных поступков и действий, принятия полной ответственности за них. Поскольку мерой и исходным пунктом отношения человека к себе выступают прежде всего другие люди, С. по самому существу носит глубоко общественный характер. См. ст. Сознание
и литературу при ней. А. Г. Спиркин.
Самосопряжённая матрица
Самосопряжённая ма'трица
(математическая), матрица, совпадающая со своей сопряжённой, т. е. такая, что aik =, где — число, комплексно сопряжённое с а. Если элементы С. м. действительны, то она симметрическая (см. Симметрическая матрица). С. м. имеет действительные собственные значения l1, l2,..., ln и соответствует линейному преобразованию в комплексном n-мерном пространстве, сводящемуся к растяжениям в |li| раз по n взаимно перпендикулярным направлениям и зеркальным отражениям в плоскостях, ортогональных тем из этих направлений, для которых li < 0. Билинейную форму вида , коэффициенты которой образуют С. м., называют эрмитовой формой. Всякая матрица может быть записана в виде A1 + iA2, где A1 и A2 суть С. м., а также в виде AU, где А является С. м., a U — унитарная матрица. Если А и В суть С. м., то AB является С. м. тогда и только тогда, когда А и В перестановочны.Самосопряжённое дифференциальное уравнение
Самосопряжённое дифференциа'льное уравне'ние,
уравнение, имеющее те же решения, что и сопряжённое с ним (см. Сопряжённые дифференциальные уравнения). Обыкновенное С. д. у. чётного порядка 2m имеет вид,
а нечётного порядка 2m
— 1 имеет вид,