Читаем Большая Советская Энциклопедия (ШО) полностью

Шо'тки дио'д, Шоттки диод, диод с барьером Шотки, полупроводниковый диод , выполненный на основе контакта металл — полупроводник; назван в честь немецкого учёного В. Шотки, создавшего в 1938—39 основы теории таких диодов. При изготовлении Ш. д. на очищенную поверхность полупроводникового кристалла (Si, GaAs, реже Ge) наносят тонкий слой металла (Au, Al, Ag, Pt и др.) методами вакуумного испарения, катодного распыления либо химического или электролитического осаждения. В Ш. д. (в приконтактной области полупроводника), как и в диодах с электронно-дырочным переходом (в области этого перехода), возникает потенциальный барьер (см. также Шотки барьер ), изменение высоты которого под действием внешнего напряжения (смещения) приводит к изменению тока через прибор (см. рис. 2 ). Ток через контакт металл — полупроводник, в отличие от тока через электронно-дырочный переход, обусловлен только основными носителями заряда.

  Отличительные особенности Ш. д. по сравнению с полупроводниковыми диодами др. типов: возможность получать требуемую высоту потенциального барьера посредством выбора соответствующего металла; значительная нелинейность вольтамперной характеристики при малых прямых смещениях; очень малая инерционность (до 10¾11 сек ); низкий уровень ВЧ шумов; технологическая совместимость с интегральными схемами ; простота изготовления. Ш. д. служат главным образом СВЧ-диодами различного назначения (детекторными, смесительными, лавинно-пролётными, параметрическими, импульсными, умножительными); кроме того, Ш. д. применяют в качестве приёмников излучения ,детекторов ядерного излучения ,тензодатчиков , модуляторов света; их используют также в выпрямителях тока ВЧ, солнечных батареях и т.д.

  Лит. см. при ст. Полупроводниковый диод .

  Ю. Р. Носов.

Рис. 2. Типичная вольтамперная характеристика полупроводникового диода с р — n-переходом: U — напряжение на диоде; I — ток через диод; U*o бр и I*o бр — максимальное допустимое обратное напряжение и соответствующий обратный ток; Uc т — напряжение стабилизации.

Структура детекторного Шотки диода: 1 — полупроводниковая подложка; 2 — эпитаксиальная плёнка; 3 — контакт металл — полупроводник; 4 — металлическая плёнка; 5 — внешний контакт.

Шотки эффект

Шо'тки эффе'кт, уменьшение работы выхода электронов из твёрдых тел под действием внешнего ускоряющего их электрического поля. Ш. э. проявляется в росте тока насыщения термоэлектронной эмиссии , в уменьшении энергии поверхностной ионизации (см. Ионная эмиссия ) и в сдвиге порога фотоэлектронной эмиссии в сторону бо'льших длин волн l Ш. э. возникает в полях Е , достаточных для рассасывания пространств. заряда у поверхности эмиттера (Е ~ 10 —100 в ×см ¾1 ), и существен до полей Е ~ 106 в . см ¾1 . При Е > 107 в ×см ¾1 начинает преобладать просачивание электронов сквозь потенциальный барьер на границе тела (туннельная эмиссия ).

  Классическая теория Ш. э. для металлов создана немецким учёным В. Шотки (1914). Из-за большой электропроводности металла силовые линии электрического поля перпендикулярны его поверхности. Поэтому электрон с зарядом —е , находящийся на расстоянии х > а (а — межатомное расстояние) от поверхности, взаимодействует с ней так, как если бы он индуцировал в металле на глубине х своё «электрическое изображение», т. е. заряд +е. Сила их притяжения:

    (1)

  (eoдиэлектрическая проницаемость вакуума), потенциал этой силы (j э. и. = —е /16peо х. Внешнее электрическое поле уменьшает j э. и. на величину Е . х (см. рис. ); на границе металл — вакуум появляется потенциальный барьер с вершиной при х = х м =. При E £  5. 106 в. см ¾1 x m  ³ 8Å. Уменьшение работы выхода F за счёт действия поля равно: , например при Е = 105 в . см ¾1 DF = 0,12 эв и х м =60 Å. В результате Ш. э. j экспоненциально возрастает от j o до , где к Больцмана постоянная , а частотный порог фотоэмиссии  сдвигается на величину:

. (2)

  В случае, когда эмиттирующая поверхность неоднородна и на ней имеются «пятна» с различной работой выхода, над её поверхностью возникает электрическое поле «пятен». Это поле тормозит электроны, вылетающие из участков катода с меньшей, чем у соседних, работой выхода. Внешнее электрическое поле складывается с полем пятен и, возрастая, устраняет тормозящее действие последнего. Вследствие этого эмиссионный ток из неоднородного эмиттера растет при увеличении E быстрее, чем в случае однородного эмиттера (аномальный Ш. э.).

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии