Читаем Большая Советская Энциклопедия (СЛ) полностью

Следя'щая систе'ма, система автоматического регулирования (управления), воспроизводящая на выходе с определённой точностью входное задающее воздействие, изменяющееся по заранее неизвестному закону. С. с. может иметь любую физическую природу и различные способы технического осуществления. Блок-схема (рис. 1 ) поясняет общий принцип действия С. с. Один из основных элементов С. с. — сравнивающее устройство, в котором производится сравнение фактически получающейся выходной величины х с заданной входной величиной g (t ) и вырабатывается сигнал рассогласования e = g (t )—x. Передача величины х с выхода на вход осуществляется по цепи отрицательной обратной связи ; при этом знак х меняется на обратный. Т. к. по заданию должно быть х = g (t ), то рассогласование e является ошибкой С. с. Эта ошибка в хорошо работающей С. с. должна быть достаточно малой. Поэтому сигнал е усиливается и преобразуется в новый сигнал u, который приводит в действие исполнительное устройство. Исполнительное устройство изменяет х так, чтобы ликвидировать рассогласование. Однако из-за наличия различных возмущающих воздействий f (t ) и помех n (t ) рассогласование возникает вновь, и С. с. всё время работает на его уничтожение, т. е. «следит» за ним и, в итоге, за заданной величиной g (t ). Для осуществления процесса управления с требуемой точностью применяют специальные корректирующие устройства, входящие в состав усилителя-преобразователя, и дополнительные местные обратные связи. В результате сигнал и достаточно сложным образом зависит от ей от параметров состояния самого исполнительного устройства. В некоторых случаях С. с. воспроизводят входную величину g (t ) в др. масштабе x (t )= kg (t ), где k — масштабный коэффициент, либо в соответствии с более сложной функциональной связью x (t )= = F [g (t )].

  Пример С. с. — система отработки на выходном валу (рис. 2 ) произвольно задаваемого на входе угла поворота q1 (t ).

  Рассогласование e = q1 (t )— q2 вырабатывается соединёнными по трансформаторной схеме сельсинами — датчиком и приёмником (последний связан с выходным валом). Исполнительным устройством является система «генератор-двигатель» с редуктором; возмущающее воздействие — изменение нагрузки на выходном валу.

  По принципу С. с. работают системы наведения (рис. 3 ). В С. с. антенны радиолокационной станции рассогласованием служит угловая ошибка между радиолокационным лучом и направлением на цель; исполнительное устройство — электропривод антенны. Автопилот наводимой ракеты также работает по принципу С. с., причём для него рассогласованием служит отклонение ракеты от направления луча, а исполнительным устройством являются рулевая машинка и рули. По принципу С. с. работают многие системы телеуправления и самонаведения. С. с. являются также измерительные приборы, работающие по компенсационному принципу; в них рассогласованием служит разность между показанием прибора и входной измеряемой величиной (см. Компенсатор автоматический ). По принципу С. с. работают некоторые вычислительные устройства. С. с., выходной величиной которых является механическое перемещение, называемое следящим приводом (см., например, Следящий электропривод ). Примеры С. с. можно обнаружить и в живых организмах.

  Расчёт С. с. при её проектировании в целом основан на теории автоматического регулирования и управления. С. с. могут иметь непрерывное управление (линейное, нелинейное) или дискретное (релейное, импульсное, цифровое), что отражается на выборе метода динамического расчёта. Кроме того, производится технический расчёт каждого блока и элемента. Одна из главных целей динамического расчёта С. с. — синтез корректирующих устройств исходя из заданных требований к качеству процесса управления.

  Лит.: Проектирование и расчет следящих систем, Л., 1964; Кочетков В. Т., Половко А. М., Пономарев В. М., Теория систем телеуправления и самонаведения ракет, М., 1964; Воронов А. А., Основы теории автоматического управления, ч. 1—3, М. — Л., 1965—70; Бесекерский В. А., Попов Е. П., Теория систем автоматического регулирования, 3 изд., М., 1975.

  Е. П. Попов.

Рис. 2. Схема следящей системы для отработки на выходном валу угла поворота входного вала: q1 (t) и q2 — углы поворота входного и выходного валов; С — Д — сельсин-датчик; С — П — сельсин-приемник; e — сигнал рассогласования; У — П — усилитель-преобразователь; Г — генератор; Д — двигатель; Р — редуктор.

Рис. 3. Схема системы наведения ракеты: 1 — стартовая установка; 2 — ракета; 3 — цель; 4 — радиолокационная станция.

Рис. 1. Блок-схема следящей системы: g(t) — заданная входная величина; n(t) — помехи; e — сигнал рассогласования; u — сигнал управления; f(t) — возмущающее действие; x — выходная величина; 1 — сравнивающее устройство; 2 — усилитель-преобразователь; 3 — исполнительное устройство; 4 — цепь главной обратной связи; 5 — цепь вспомогательной (местной) обратной связи.

Перейти на страницу:

Похожие книги

100 знаменитых загадок истории
100 знаменитых загадок истории

Многовековая история человечества хранит множество загадок. Эта книга поможет читателю приоткрыть завесу над тайнами исторических событий и явлений различных эпох – от древнейших до наших дней, расскажет о судьбах многих легендарных личностей прошлого: царицы Савской и короля Макбета, Жанны д'Арк и Александра I, Екатерины Медичи и Наполеона, Ивана Грозного и Шекспира.Здесь вы найдете новые интересные версии о гибели Атлантиды и Всемирном потопе, призрачном золоте Эльдорадо и тайне Туринской плащаницы, двойниках Анастасии и Сталина, злой силе Распутина и Катынской трагедии, сыновьях Гитлера и обстоятельствах гибели «Курска», подлинных событиях 11 сентября 2001 года и о многом другом.Перевернув последнюю страницу книги, вы еще раз убедитесь в правоте слов английского историка и политика XIX века Томаса Маклея: «Кто хорошо осведомлен о прошлом, никогда не станет отчаиваться по поводу настоящего».

Илья Яковлевич Вагман , Инга Юрьевна Романенко , Мария Александровна Панкова , Ольга Александровна Кузьменко

Фантастика / Публицистика / Энциклопедии / Альтернативная история / Словари и Энциклопедии
100 знаменитых катастроф
100 знаменитых катастроф

Хорошо читать о наводнениях и лавинах, землетрясениях, извержениях вулканов, смерчах и цунами, сидя дома в удобном кресле, на территории, где земля никогда не дрожала и не уходила из-под ног, вдали от рушащихся гор и опасных рек. При этом скупые цифры статистики – «число жертв природных катастроф составляет за последние 100 лет 16 тысяч ежегодно», – остаются просто абстрактными цифрами. Ждать, пока наступят чрезвычайные ситуации, чтобы потом в борьбе с ними убедиться лишь в одном – слишком поздно, – вот стиль современной жизни. Пример тому – цунами 2004 года, превратившее райское побережье юго-восточной Азии в «морг под открытым небом». Помимо того, что природа приготовила человечеству немало смертельных ловушек, человек и сам, двигая прогресс, роет себе яму. Не удовлетворяясь природными ядами, ученые синтезировали еще 7 миллионов искусственных. Мегаполисы, выделяющие в атмосферу загрязняющие вещества, взрывы, аварии, кораблекрушения, пожары, катастрофы в воздухе, многочисленные болезни – плата за человеческую недальновидность.Достоверные рассказы о 100 самых известных в мире катастрофах, которые вы найдете в этой книге, не только потрясают своей трагичностью, но и заставляют задуматься над тем, как уберечься от слепой стихии и избежать непредсказуемых последствий технической революции, чтобы слова французского ученого Ламарка, написанные им два столетия назад: «Назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания», – остались лишь словами.

Александр Павлович Ильченко , Валентина Марковна Скляренко , Геннадий Владиславович Щербак , Оксана Юрьевна Очкурова , Ольга Ярополковна Исаенко

Публицистика / История / Энциклопедии / Образование и наука / Словари и Энциклопедии