Термоэластопла'сты,
термопластичные эластомеры, синтетические полимеры, которые при обычных температурах обладают свойствами резин, а при повышенных размягчаются, подобно термопластам. Сочетание таких свойств обусловлено тем, что Т. являются блоксополимерами
,
в макромолекулах которых эластичные блоки (например, полибутадиеновые) чередуются в определённой последовательности с термопластичными (например, полистирольными). В отличие от каучуков, Т. перерабатываются в резиновые изделия (например, обувь), минуя стадию вулканизации
.Термоэлектрическая дефектоскопия
Термоэлектри'ческая дефектоскопи'я,
см. в ст. Дефектоскопия
.Термоэлектрические явления
Термоэлектри'ческие явле'ния,
совокупность физических явлений, обусловленных взаимосвязью между тепловыми и электрическими процессами в металлах и полупроводниках. Т. я. являются эффекты Зеебека, Пельтье и Томсона. Зеебека эффект
состоит в том, что в замкнутой цепи, состоящей из разнородных проводников, возникает эдс (термоэдс), если места контактов поддерживают при разных температурах. В простейшем случае, когда электрическая цепь состоит из двух различных проводников, она называется термоэлементом
,
или термопарой
.
Величина термоэдс зависит только от температур горячего T1
и холодного T2
контактов и от материала проводников. В небольшом интервале температур термоэдс Е
можно считать пропорциональной разности (T1
– T2
),
то есть Е
= a
(T1
–Т2
). Коэффициент a
называется термоэлектрической способностью пары (термосилой, коэффициента термоэдс, или удельной термоэдс). Он определяется материалами проводников, но зависит также от интервала температур; в некоторых случаях с изменением температуры a меняет знак. В таблице приведены значения а для некоторых металлов и сплавов по отношению к Pb для интервала температур 0—100 °С (положительный знак a
приписан тем металлам, к которым течёт ток через нагретый спай). Однако цифры, приведённые в таблице, условны, так как термоэдс материала чувствительна к микроскопическим количествам примесей (иногда лежащим за пределами чувствительности химического анализа), к ориентации кристаллических зёрен, термической или даже холодной обработке материала. На этом свойстве термоэдс основан метод отбраковки материалов по составу. По этой же причине термоэдс может возникнуть в цепи, состоящей из одного и того же материала при наличии температурных перепадов, если разные участки цепи подвергались различным технологическим операциям. С др. стороны, эдс термопары не меняется при последовательном включении в цепь любого количества др. материалов, если появляющиеся при этом дополнительные места контактов поддерживают при одной и той же температуре. Материал | a, мкв/°С | Материал | a, мкв/°С |
Сурьма…………… Железо……..…… Молибден ………. Кадмий ………….. Вольфрам……..… Медь……………... Цинк……………… Золото…………… Серебро ………… Свинец…………… Олово…………….. Магний ………….. Алюминий………. | +43 +15 +7,6 +4,6 +3,6 +3,2 +3,1 +2,9 +2,7 0,0 -0,2 -0,0 -0,4 | Ртуть……….…... Платина……….. Натрий ………… Палладий ……… Калий…………… Никель…………. Висмут…………. Хромель……….. Нихром………… Платинородий… Алюмель……….. Константан…….. Копель………….. | -4,4 -4,4 -6,5 -8,9 -13,8 -20,8 -68,0 +24 +18 +2 -17,3 -38 -38 |
Пельтье эффект
обратен явлению Зеебека: при протекании тока в цепи из различных проводников, в местах контактов, в дополнение к теплоте Джоуля, выделяется или поглощается, в зависимости от направления тока, некоторое количество теплоты Qn
, пропорциональное протекающему через контакт количеству электричества (то есть силе тока I
и времени t
): Qn
=
Пlt.
Коэффициент П зависит от природы находящихся в контакте материалов и температуры (коэффициент Пельтье).