Читаем Большая Советская Энциклопедия (ТЕ) полностью

Термоэлектрический пирометр

Термоэлектри'ческий пиро'метр, прибор для измерения температуры . Состоит из термопары , в качестве чувствительного элемента, подключенных к термопаре компенсационных и соединительных проводов и электроизмерительного прибора (милливольтметра, автоматического потенциометра и др.). Подробнее см. в ст. Термометрия .

Термоэлектрический прибор

Термоэлектри'ческий прибо'р измерительный, прибор для измерения силы переменного тока, реже электрического напряжения, мощности. Представляет собой сочетание магнитоэлектрического измерителя с одним или несколькими термопреобразователями. Термопреобразователь состоит из термопары (или нескольких термопар) и нагревателя, по которому протекает измеряемый ток (рис. ). Под действием тепла, выделяемого нагревателем, между свободными концами термопары возникает термоэдс, измеряемая магнитоэлектрическим измерителем. Для расширения пределов измерения термопреобразоватслей (по току от 1 а и выше) используют высокочастотные измерительные трансформаторы тока.

  Т. п. обеспечивают сравнительно большую точность измерений в широком диапазоне частот и независимость показаний от формы кривой тока, протекающего через нагреватель. Их основные недостатки — зависимость показаний от температуры окружающей среды, значительное собственное потребление мощности, недопустимость больших перегрузок (не более чем в 1,5 раза). Применяются преимущественно для измерения действующего значения силы переменного тока (от единиц мка до нескольких десятков а ) в диапазоне частот от нескольких десятков гц до нескольких сотен Мгц с погрешностью 1—5%.

  Лит.: Червякова В. И., Термоэлектрические приборы, М.— Л., 1963; Электрические измерения, под ред. А. В. Фремке, 4 изд., Л., 1973; Шкурин Г. П., Справочник по электро- и электронно-измерительным приборам, М., 1972.

Схемы термоэлектрических приборов для измерения тока: а — контактная, с одной термопарой; б, в — бесконтактные, с одной и с несколькими включенными последовательно термопарами; г — с включением через высокочастотный трансформатор тока ТТ; Ix — измеряемый ток; rн — нагреватель; rt — термопара; ИМ — магнитоэлектрический измеритель.

Термоэлектрическое охлаждение

Термоэлектри'ческое охлажде'ние, поглощение теплоты при прохождении электрического тока через термоэлемент . Сущность Т. о. заключается в появлении разности температур в спаях термоэлемента; при этом на холодном спае происходит поглощение теплоты из охлаждаемого вещества, передача её к горячему спаю и далее в окружающую среду (см. Пельтье эффект ). Одновременно с генерацией холода в цепи термоэлемента выделяется теплота (см. Джоуля — Ленца закон ) и передаётся к холодному спаю путём теплопроводности. Результирующей характеристикой охлаждающей способности термоэлемента, используемого для Т. о., является так называемая эффективность , где a — термоэлектрический коэффициент, l — удельная теплопроводность, r удельное электрическое сопротивление. Обычно при изготовлении термоэлементов для Т. о. используют полупроводники (Z = 1,5—3,5 град-1 ), например тройные сплавы сурьмы, теллура, висмута и селена (см. Термоэлектрические явления ). Установки с Т. о. просты по конструкции, не имеют движущихся частей и холодильных агентов , безопасны в эксплуатации, но малоэкономичны (удельный расход электроэнергии в 6— 8 раз выше, чем у парокомпрессионных холодильных машин ). Обычно Т. о. используется в установках с холодопроизводительностью до 100 вт, которые находят практическое применение в радиоэлектронике, вакуумной технике, приборостроении, медицине и т. д.

  В. А. Гоголин.

Термоэлектронная эмиссия

Термоэлектро'нная эми'ссия, Ричардсона эффект, испускание электронов нагретыми телами (твёрдыми, реже — жидкостями) в вакуум или в различные среды. Впервые исследована О. У. Ричардсоном в 1900— 1901. Т. э. можно рассматривать как процесс испарения электронов в результате их теплового возбуждения. Для выхода за пределы тела (эмиттера) электронам нужно преодолеть потенциальный барьер у границы тела; при низких температурах тела количество электронов, обладающих достаточной для этого энергией, мало; с увеличением температуры их число растет и Т. э. возрастает (см. Твёрдое тело ).

  Главной характеристикой тел по отношению к Т. э. является величина плотности термоэлектронного тока насыщения jo (рис. 1 ) при заданной температуре. При Т. э. в вакуум однородных (по отношению к работе выхода ) эмиттеров в отсутствии внешних электрических полей величина j определяется формулой Ричардсона — Дэшмана:

  .    (1)

Перейти на страницу:

Похожие книги

100 знаменитых катастроф
100 знаменитых катастроф

Хорошо читать о наводнениях и лавинах, землетрясениях, извержениях вулканов, смерчах и цунами, сидя дома в удобном кресле, на территории, где земля никогда не дрожала и не уходила из-под ног, вдали от рушащихся гор и опасных рек. При этом скупые цифры статистики – «число жертв природных катастроф составляет за последние 100 лет 16 тысяч ежегодно», – остаются просто абстрактными цифрами. Ждать, пока наступят чрезвычайные ситуации, чтобы потом в борьбе с ними убедиться лишь в одном – слишком поздно, – вот стиль современной жизни. Пример тому – цунами 2004 года, превратившее райское побережье юго-восточной Азии в «морг под открытым небом». Помимо того, что природа приготовила человечеству немало смертельных ловушек, человек и сам, двигая прогресс, роет себе яму. Не удовлетворяясь природными ядами, ученые синтезировали еще 7 миллионов искусственных. Мегаполисы, выделяющие в атмосферу загрязняющие вещества, взрывы, аварии, кораблекрушения, пожары, катастрофы в воздухе, многочисленные болезни – плата за человеческую недальновидность.Достоверные рассказы о 100 самых известных в мире катастрофах, которые вы найдете в этой книге, не только потрясают своей трагичностью, но и заставляют задуматься над тем, как уберечься от слепой стихии и избежать непредсказуемых последствий технической революции, чтобы слова французского ученого Ламарка, написанные им два столетия назад: «Назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания», – остались лишь словами.

Александр Павлович Ильченко , Валентина Марковна Скляренко , Геннадий Владиславович Щербак , Оксана Юрьевна Очкурова , Ольга Ярополковна Исаенко

Публицистика / История / Энциклопедии / Образование и наука / Словари и Энциклопедии