Читаем Большая Советская Энциклопедия (ТЕ) полностью

  Соч.: Scientific papers, v. I—4, Camb,, 1958—71; в рус. пер.— О переносе вихрей и тепла при турбулентном движении жидкостей, в сборнике: Проблемы турбулентности, М.— Л., 1936; Результаты исследований движения при больших скоростях, в сборнике: Газовая динамика, М.— Л., 1939; Современное состояние теории турбулентной диффузии, в сборнике: Атмосферная диффузия и загрязнение воздуха, М., 1962.

  Лит.: Southwell R. V., G. I. Taylor; a biographical note, в сборнике: Surveys in mechanics, Camb., 1956; McGraw — Hill Modern Men of Science, v. 2, [N. Y., 1968].

Дж. И. Тейлор.

Тейлора ряд

Те'йлора ряд,степенной ряд вида

  , (1)

где f (x ) — функция, имеющая при х = а производные всех порядков. Во многих практически важных случаях этот ряд сходится к f (x ) на некотором интервале с центром в точке а:

   (2)

(эта формула опубликована в 1715 Б. Тейлором ). Разность Rn (x ) = f (x ) — Sn (x ), где Sn (x ) — сумма первых n + 1 членов ряда (1), называется остаточным членом Т. р. Формула (2) справедлива, если . Т. р. можно представить в виде

  ,

применимом и к функциям многих переменных.

  При а = 0 разложение функции в Т. р. (исторически неправильно называемый в этом случае рядом Маклорена; см. Маклорена ряд ) принимает вид:

,

в частности:

   (3)

   (4)

   (5)

   (6)

  .(7)

Ряд (3), являющийся обобщением на случай дробных и отрицательных показателей формулы бинома Ньютона, сходится: при -1< х < 1, если m < -1; при -1< x lb 1, если             -1< m < 0; при -1 lb x lb 1, если m > 0. Ряды (4), (5) и (6) сходятся при любых значениях х, ряд (7) сходится при -1< x lb 1.

  Функция f (z ) комплексного переменного z, регулярная в точке а, раскладывается в Т. р. по степеням zа внутри круга с центром в точке я и с радиусом, равным расстоянию от а до ближайшей особой точки функции f (z ). Вне этого круга Т. р. расходится, поведение же его на границе круга сходимости может быть весьма сложным. Радиус круга сходимости выражается через коэффициенты Т. р. (см. Радиус сходимости ).

  Т. р. является мощным аппаратом для исследования функций и для приближённых вычислений. См. также Тейлора формула .

  Лит.: Хинчин А. Я., Краткий курс математического анализа, М., 1953; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969.

Тейлора формула

Те'йлора фо'рмула, формула

   

изображающая функцию f (x), имеющую n -ю производную f (n ) (a ) в точке х = а, в виде суммы многочлена степени n, расположенного по степеням ха, и остаточного члена Rn (x ), являющегося в окрестности точки а бесконечно малой более высокого порядка, чем (x—a ) n [то есть Rn (x ) = an (x )(xa ) n , где an (x ) ® 0 при х ® а ]. Если в интервале между а и х существует (n + 1)-я производная, то Rn (x ) можно представить в видах:

  ,

где x и x1 — какие-то точки указанного интервала (остаточный член Т. ф. в формах Лагранжа и соответственно Коши). График многочлена, входящего в Т. ф.. имеет в точке а соприкосновение не ниже n-го порядка с графиком функции f (x ). Т. ф. применяют для исследования функций и для приближённых вычислений.

  Лит.: Хинчин А. Я., Краткий курс математического анализа, М.. 1953; Фихтенгольц Г. М.. Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М.. 1969.

Тейлоризм

Тейлори'зм, система организации труда и управления производством, возникшая в США на рубеже 19—20 вв. Характеризуется использованием достижений науки и техники в целях извлечения максимума прибавочной стоимости путём усиления эксплуатации рабочего класса. Названа по имени американского инженера Ф. У. Тейлора (F. W. Taylor; 1856—1915). Т. представляет собой совокупность разработанных им и его последователями методов организации и нормирования труда и управления производств. процессами, подбора, расстановки и оплаты рабочей силы, направленных на существенное повышение производительности и интенсивности труда . Т. предусматривает детальное исследование трудовых процессов и установление жёсткого регламента их выполнения, а также режимов работы оборудования, установление высокого «подённого» (или почасового) урока (нормы выработки), подбор и специальную тренировку рабочих, пригодных для выполнения различных видов работ при очень высоких темпах труда.

Перейти на страницу:

Похожие книги

100 знаменитых катастроф
100 знаменитых катастроф

Хорошо читать о наводнениях и лавинах, землетрясениях, извержениях вулканов, смерчах и цунами, сидя дома в удобном кресле, на территории, где земля никогда не дрожала и не уходила из-под ног, вдали от рушащихся гор и опасных рек. При этом скупые цифры статистики – «число жертв природных катастроф составляет за последние 100 лет 16 тысяч ежегодно», – остаются просто абстрактными цифрами. Ждать, пока наступят чрезвычайные ситуации, чтобы потом в борьбе с ними убедиться лишь в одном – слишком поздно, – вот стиль современной жизни. Пример тому – цунами 2004 года, превратившее райское побережье юго-восточной Азии в «морг под открытым небом». Помимо того, что природа приготовила человечеству немало смертельных ловушек, человек и сам, двигая прогресс, роет себе яму. Не удовлетворяясь природными ядами, ученые синтезировали еще 7 миллионов искусственных. Мегаполисы, выделяющие в атмосферу загрязняющие вещества, взрывы, аварии, кораблекрушения, пожары, катастрофы в воздухе, многочисленные болезни – плата за человеческую недальновидность.Достоверные рассказы о 100 самых известных в мире катастрофах, которые вы найдете в этой книге, не только потрясают своей трагичностью, но и заставляют задуматься над тем, как уберечься от слепой стихии и избежать непредсказуемых последствий технической революции, чтобы слова французского ученого Ламарка, написанные им два столетия назад: «Назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания», – остались лишь словами.

Александр Павлович Ильченко , Валентина Марковна Скляренко , Геннадий Владиславович Щербак , Оксана Юрьевна Очкурова , Ольга Ярополковна Исаенко

Публицистика / История / Энциклопедии / Образование и наука / Словари и Энциклопедии