Читаем Большая Советская Энциклопедия (ТЕ) полностью

  Рассматривая предметы непосредственно, можно различать очень мелкие детали (в соответствии с разрешающей способностью глаза). Поэтому формально можно считать оптическое изображение, проецируемое на сетчатку глаза, состоящим из m разрешимых деталей (элементов). Каждый такой элемент можно охарактеризовать яркостью В, цветностью (так называемым цветовым тоном l и чистотой цвета р ) и геометрическим местом (координатами х, у ), то есть описать многомерной функцией fi (B, l, р, х, у ); всё изображение описывается функцией

.

Это справедливо и для Т., где оптическое изображение объекта передачи проецируется (оптической системой) на светочувствительный элемент передающей телевизионной трубки ; число m в этом случае определяется разрешающей способностью трубки и размерами телевизионного кадра . Практически число m ограничивается техническими возможностями системы и её назначением и, например в вещательном Т. СССР, составляет около 500 тысяч элементов (в 1 кадре).

  Если координаты х и у каждого элемента известны, для воспроизведения состояния элемента требуется передача трёх его параметров В,l и р, для чего необходимы три канала связи, а для воспроизведения всего изображения — 3 m каналов (в случае стереотелевидения число каналов ещё удваивается, так как требуется передача изображений отдельно для левого и правого глаза). Отсюда очевидно, что одновременная передача всех элементов изображения практически невозможна. Поэтому в Т. принят принцип последовательной передачи изображений (поочерёдно — элемент за элементом), предложенный португальским учёным А. ди Пайва (1878) и независимо от него П. И. Бахметьевым (188Э). Возможность такой передачи основывается на свойстве человеческого зрения воспринимать пульсирующий свет как непрерывный, если частота пульсаций превышает критическую, которая зависит от яркости источника и составляет несколько десятков пульсаций в сек. Процесс последовательного преобразования элементов изображения в электрические сигналы при передаче и обратный процесс при приёме носят название развёртки изображения (см. также Телевизионная развёртка ). Эти процессы анализа и синтеза изображения должны совершаться синхронно и синфазно.

  Закон развёртки определяется назначением телевизионной системы. Так, например, в современной телевизионной вещательной системе принята линейно-строчная развёртка, при которой образующийся кадр изображения имеет горизонтально-строчную структуру. Для поддержания синфазности развёрток в конце каждой строки и кадра передаются синхронизирующие импульсы. Тем самым телевизионная станция управляет развёртками всех телевизоров в зоне своего действия. Одно из первых устройств для передачи элементов изображения, основанное на применении вращающегося диска с отверстиями, было предложено П. Нипковым (1884). Диск Нипкова применялся в ранних, ещё несовершенных механических системах Т. Техническая реализация процессов преобразования и восстановления оптического изображения в современное Т. осуществляется главным образом вакуумными электроннолучевыми трубками. Практическое освоение электронных систем Т., основанное на использовании таких приборов, относится к концу 20-х — 30-м гг. 20 в. и связано с именами В. К. Зворыкина и Ф. Фарнсуорта (США), К. Свинтона (Великобритания), В. П. Грабовского, С. И. Катаева , А. П. Константинова , Б. Л. Розинга, П. В. Тимофеева , П. В. Шмакова (СССР), а также многих др. изобретателей. Среди передающих трубок наиболее распространены видиконы (с внутренним фотоэффектом) и суперортиконы (с внешним фотоэффектом), среди приёмных — различные кинескопы .

  Исторически Т. развивалось начиная с передачи только яркостной характеристики каждого элемента изображения. В черно-белом Т. (см. рис. ) яркостный сигнал (видеосигнал ) на выходе передающей трубки подвергается усилению и преобразованию (см. Телевизионный сигнал ). Каналом связи служит радиоканал или кабельный канал (см. Телевизионная передающая сеть ). В приёмном устройстве принятые сигналы преобразуются в однолучевом кинескопе, экран которого покрыт люминофором белого свечения.

  В цветном телевидении , кроме яркостной составляющей, передаётся и информация о цветности каждого элемента. Поскольку всё многообразие природных цветов можно воспроизвести оптически из трёх основных — красного, зелёного и синего, взятых в определённых пропорциях, то телевизионная передающая камера содержит не одну, а три трубки — для создания яркостного сигнала и сигналов основных цветов. Все эти сигналы при передаче (на телецентре) подвергаются кодированию, а при приёме (в телевизионном приёмнике) — декодированию. Цветной кинескоп — трехлучевой, с мозаичным (образованным люминофорами красного, зелёного и синего свечения) экраном.

Перейти на страницу:

Похожие книги

100 знаменитых катастроф
100 знаменитых катастроф

Хорошо читать о наводнениях и лавинах, землетрясениях, извержениях вулканов, смерчах и цунами, сидя дома в удобном кресле, на территории, где земля никогда не дрожала и не уходила из-под ног, вдали от рушащихся гор и опасных рек. При этом скупые цифры статистики – «число жертв природных катастроф составляет за последние 100 лет 16 тысяч ежегодно», – остаются просто абстрактными цифрами. Ждать, пока наступят чрезвычайные ситуации, чтобы потом в борьбе с ними убедиться лишь в одном – слишком поздно, – вот стиль современной жизни. Пример тому – цунами 2004 года, превратившее райское побережье юго-восточной Азии в «морг под открытым небом». Помимо того, что природа приготовила человечеству немало смертельных ловушек, человек и сам, двигая прогресс, роет себе яму. Не удовлетворяясь природными ядами, ученые синтезировали еще 7 миллионов искусственных. Мегаполисы, выделяющие в атмосферу загрязняющие вещества, взрывы, аварии, кораблекрушения, пожары, катастрофы в воздухе, многочисленные болезни – плата за человеческую недальновидность.Достоверные рассказы о 100 самых известных в мире катастрофах, которые вы найдете в этой книге, не только потрясают своей трагичностью, но и заставляют задуматься над тем, как уберечься от слепой стихии и избежать непредсказуемых последствий технической революции, чтобы слова французского ученого Ламарка, написанные им два столетия назад: «Назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания», – остались лишь словами.

Александр Павлович Ильченко , Валентина Марковна Скляренко , Геннадий Владиславович Щербак , Оксана Юрьевна Очкурова , Ольга Ярополковна Исаенко

Публицистика / История / Энциклопедии / Образование и наука / Словари и Энциклопедии