Так как центральный угол в радианной мере измеряется тем же числом, что и дуга (радиус окружности равен единице), то cosj и sinj можно рассматривать как косинус и синус угла. Вообще под аргументом Т. ф. принято понимать число, которое можно рассматривать геометрически как длину дуги или радианную меру угла. Если аргумент Т. ф. рассматривают как угол, то его значение может быть выражено и в градусной мере. Для острых углов j (0 < j < p/2), и только для них, Т. ф. cos j и sin j можно рассматривать как отношение катетов прямоугольного треугольника, прилежащего углу или противолежащего углу, к гипотенузе. Дуга
С помощью основных Т. ф. можно определить другие Т. ф.: тангенс tgj = sinj /cosj, котангенс ctgj = cosj /sinj, секанс secj = 1/cosj, косеканс cosecj = 1/sinj. При этом tgj и secj определяются только для таких j, для которых cosj ¹ 0; а ctgj и cosecj для тех j, для которых sinj ¹ 0; функция secj — чётная, а функции cosecj, tgj и ctgj — нечётные. Эти функции также могут быть представлены геометрически отрезками прямых (
cosj = sin ( — j); ctgj = tg ( — j);
cosecj = sec ( — j).
Подобно синусу и косинусу, остальные Т. ф. для острых углов могут рассматриваться как отношения сторон прямоугольного треугольника: тангенс и котангенс как отношения катетов (противолежащего к прилежащему и наоборот), а секанс и косеканс как отношения гипотенузы соответственно к прилежащему и противолежащему катетам.
Так как точка С, являющаяся концом дуги j, служит одновременно концом дуг j + 2p, j + 4p, ¼ (2p — длина окружности), то все Т. ф. оказываются периодическими. При этом основным периодом функций sinj, cosj, secj, cosecj является число 2p (угол в 360°), а основным периодом tgj и ctgj — число p (угол в 180°). Графики Т. ф. см. на
Значения Т. ф. одного и того же аргумента связаны между собой рядом соотношений:
sin2
j + cos2 j = 1,tg2
j + 1 = sec2 j; ctg2 j + 1 = cosec2 j.Для некоторых значений аргумента значения Т. ф. могут быть получены из геометрических соображений (табл.).
Аргумент | Тригонометрические функции | ||||||
в градусах | в радианах | sinj | cosj | tgj | ctgj | secj | cosecj |
0˚ | 0 | 0 | 1 | 0 | не существует | 1 | не существует |
30˚ | p/6 | 1 /2 | Ö3/2 » 0,8660 | Ö3/3 » 0,5774 | Ö3 » 1,7322 | 2Ö3/3 » 1,1547 | 2 |
45˚ | p/4 | Ö2/2 » 0,7071 | Ö2/2 » 0,7071 | 1 | 1 | Ö2 » 1,4142 | Ö2 » 1,4142 |
60˚ | p/3 | Ö3/2 » 0,8660 | 1 /2 | Ö3 » 1,7322 | Ö3/3 » 0,5774 | 2 | 2Ö3/3 » 1,1547 |
90˚ | p/2 | 1 | 0 | не существует | 0 | не существует | 1 |
Для больших значений аргумента можно пользоваться так называемыми формулами приведения, которые позволяют выразить Т. ф. любого аргумента через
Т. ф. аргумента j, удовлетворяющего соотношению 0 £ j £ или даже 0 £ j £ , что упрощает составление таблиц Т. ф. и пользование ими, а также построение графиков. Эти формулы имеют вид:
в первых трёх формулах
Важнейшими тригонометрическими формулами являются формулы сложения, выражающие Т. ф. суммы или разности значений аргумента через Т. ф. этих значений:
знаки в левой и правой частях всех формул согласованы, то есть верхнему (нижнему) знаку слева соответствует верхний (нижний) знак справа. Из них, в частности, получаются формулы для Т. ф. кратных аргументов, например: