Читаем Большая Советская Энциклопедия (ТР) полностью

  Так как центральный угол в радианной мере измеряется тем же числом, что и дуга (радиус окружности равен единице), то cosj и sinj можно рассматривать как косинус и синус угла. Вообще под аргументом Т. ф. принято понимать число, которое можно рассматривать геометрически как длину дуги или радианную меру угла. Если аргумент Т. ф. рассматривают как угол, то его значение может быть выражено и в градусной мере. Для острых углов j (0 < j < p/2), и только для них, Т. ф. cos j и sin j можно рассматривать как отношение катетов прямоугольного треугольника, прилежащего углу или противолежащего углу, к гипотенузе. Дуга AB окружности называется 1-й её четвертью, соответственно дуги BA' — 2-й, A'B' — 3-й, B'A — 4-й четвертями. Для углов j из 1-й четверти: cosj > 0, sinj > 0, из 2-й четверти: cosj < 0, sinj > 0, из 3-й четверти: cosj < 0, sinj < 0, из 4-й четверти: cosj > 0, sinj < 0. Кроме того, cosj — чётная функция: cos (—j) = cosj, а sinj — нечётная функция: sin (—j) = —sinj.

  С помощью основных Т. ф. можно определить другие Т. ф.: тангенс tgj = sinj /cosj, котангенс ctgj = cosj /sinj, секанс secj = 1/cosj, косеканс cosecj = 1/sinj. При этом tgj и secj определяются только для таких j, для которых cosj ¹ 0; а ctgj и cosecj для тех j, для которых sinj ¹ 0; функция secj — чётная, а функции cosecj, tgj и ctgj — нечётные. Эти функции также могут быть представлены геометрически отрезками прямых (рис. 1 ): tgj = AL , ctgj = BK , secj = OL , cosecj = OK (для острых углов j и соответствующими отрезками для других углов). С этим геометрическим представлением связано и происхождение названий Т. ф. Так, латинское tangens означает касательную (tgj изображается отрезком AL касательной к окружности), secans — секущую (secj изображается отрезком OL секущей к окружности). Название «синус» (лат. sinus — изгиб, пазуха) представляет собой перевод арабского «джайб», являющегося, по-видимому, искажением санскритского слова «джива» (буквально — тетива лука), которым индийские математики обозначали синус. Названия «косинус», «котангенс», «косеканс» представляют собой сокращения термина complementi sinus (синус дополнения) и ему подобных, выражающих тот факт, что cosj, ctgj и cosecj равны соответственно синусу, тангенсу и секансу аргумента (дуги или угла), дополнительного к j (до или, в градусной мере, до 90°):

cosj = sin ( — j); ctgj = tg ( — j);

cosecj = sec ( — j).

  Подобно синусу и косинусу, остальные Т. ф. для острых углов могут рассматриваться как отношения сторон прямоугольного треугольника: тангенс и котангенс как отношения катетов (противолежащего к прилежащему и наоборот), а секанс и косеканс как отношения гипотенузы соответственно к прилежащему и противолежащему катетам.

  Так как точка С, являющаяся концом дуги j, служит одновременно концом дуг j + 2p, j + 4p, ¼ (2p — длина окружности), то все Т. ф. оказываются периодическими. При этом основным периодом функций sinj, cosj, secj, cosecj является число 2p (угол в 360°), а основным периодом tgj и ctgj — число p (угол в 180°). Графики Т. ф. см. на рис. 2.

  Значения Т. ф. одного и того же аргумента связаны между собой рядом соотношений:

sin2 j + cos2 j = 1,

tg2 j + 1 = sec2 j; ctg2 j + 1 = cosec2 j.

Для некоторых значений аргумента значения Т. ф. могут быть получены из геометрических соображений (табл.).

Аргумент Тригонометрические функции
в градусах в радианах sinj cosj tgj ctgj secj cosecj
0 0 1 0 не существует 1 не существует
30˚ p/6 1 /2 Ö3/2 » 0,8660 Ö3/3 » 0,5774 Ö3 » 1,7322 2Ö3/3 » 1,1547 2
45˚ p/4 Ö2/2 » 0,7071 Ö2/2 » 0,7071 1 1 Ö2 » 1,4142 Ö2 » 1,4142
60˚ p/3 Ö3/2 » 0,8660 1 /2 Ö3 » 1,7322 Ö3/3 » 0,5774 2 2Ö3/3 » 1,1547
90˚ p/2 1 0 не существует 0 не существует 1

  Для больших значений аргумента можно пользоваться так называемыми формулами приведения, которые позволяют выразить Т. ф. любого аргумента через

  Т. ф. аргумента j, удовлетворяющего соотношению 0 £ j £ или даже 0 £ j £ , что упрощает составление таблиц Т. ф. и пользование ими, а также построение графиков. Эти формулы имеют вид:

          (1)

  в первых трёх формулах n может быть любым целым числом, причём верхний знак соответствует значению n = 2k , а нижний — значению n = 2k + 1; в последних — n может быть только нечётным числом, причём верхний знак берётся при n = 4k + 1, а нижний при n = 4k — 1.

  Важнейшими тригонометрическими формулами являются формулы сложения, выражающие Т. ф. суммы или разности значений аргумента через Т. ф. этих значений:

          (2)

знаки в левой и правой частях всех формул согласованы, то есть верхнему (нижнему) знаку слева соответствует верхний (нижний) знак справа. Из них, в частности, получаются формулы для Т. ф. кратных аргументов, например:

Перейти на страницу:

Похожие книги

100 великих кладов
100 великих кладов

С глубокой древности тысячи людей мечтали найти настоящий клад, потрясающий воображение своей ценностью или общественной значимостью. В последние два столетия всё больше кладов попадает в руки профессиональных археологов, но среди нашедших клады есть и авантюристы, и просто случайные люди. Для одних находка крупного клада является выдающимся научным открытием, для других — обретением национальной или религиозной реликвии, а кому-то важна лишь рыночная стоимость обнаруженных сокровищ. Кто знает, сколько ещё нераскрытых загадок хранят недра земли, глубины морей и океанов? В историях о кладах подчас невозможно отличить правду от выдумки, а за отдельными ещё не найденными сокровищами тянется длинный кровавый след…Эта книга рассказывает о ста великих кладах всех времён и народов — реальных, легендарных и фантастических — от сокровищ Ура и Трои, золота скифов и фракийцев до призрачных богатств ордена тамплиеров, пиратов Карибского моря и запорожских казаков.

Андрей Юрьевич Низовский , Николай Николаевич Непомнящий

История / Энциклопедии / Образование и наука / Словари и Энциклопедии
100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука