Читаем Большая Советская Энциклопедия (ТР) полностью

Трансформацио'нная грамма'тика , 1) разновидность порождающей грамматики (см. Математическая лингвистика ), то есть эксплицитное описание множества грамматически правильных предложений языка, позволяющее точно определить, какие предложения допустимы в языке. Отличительной особенностью Т. г. среди других видов порождающих грамматик является различение в предложении глубинной структуры (определяющей семантическую интерпретацию предложения) и поверхностной структуры (определяющей фонетический облик предложения). Синтаксис в Т. г. состоит из двух компонентов: базовый компонент, задающий множество глубинных структур языка; трансформации, переводящие глубинные структуры в соответствующие им поверхностные. 2) Трансформационная лингвистика, лингвистическое направление, возникшее в 50-х гг. 20 в., считающее главной задачей описание языка — построение для него Т. г. в 1-м значении (начало этому направлению положено американским учёным Н. Хомским, см. также работы Р. Лиза, Ч. Филмора, Э. Клаймы, Э. Бака, Дж. Каца, Дж. Фодора, М. Бирвиша, Р. Ружички и др.).

  В конце 60-х гг. понятие глубинной структуры подверглось пересмотру в связи с проблемой соединения синтаксического описания с семантикой. Т. г. расщепилась на два направления —так называемая интерпретирующая семантика, сохранившая понятие глубинной структуры предложения, но допускающая правила семантической интерпретации, использующие не только ту информацию, которая содержится в глубинной структуре (Р. Джекендофф, Р. Даферти и др.), и так называемая порождающая семантика, отбросившая понятие глубинной структуры и разрабатывающая правила порождения предложений языка непосредственно из их семантических представлений (Дж. Лаков, Дж. Мак-Коли, Дж. Росс, П. Постал и др.).

  Е. В. Падучева.

Трансформация (в генетике)

Трансформа'ция в генетике, внесение в клетку генетической информации при помощи изолированной дезоксирибонуклеиновой кислоты (ДНК). Т. приводит к появлению у трансформированной клетки (трансформанта) и её потомства новых признаков, характерных для объекта — источника ДНК. Явление Т. было открыто в 1928 английским учёным Ф. Гриффитом, наблюдавшим наследуемое восстановление синтеза капсульного полисахарида у пневмококков при заражении мышей смесью убитых нагреванием капсулированных бактерий и клеток, лишённых капсулы. Организм мыши в этих экспериментах играл роль своеобразного детектора, так как приобретение капсульного полисахарида сообщало клеткам, лишённым капсулы, способность вызывать смертельный для животного инфекционный процесс (см. схему ). В последующих экспериментах было установлено, что Т. имеет место и в том случае, когда вместо убитых клеток к лишённым капсулы пневмококкам добавляли экстракт из разрушенных капсулированных бактерий. В 1944 О. Эйвери с сотрудниками (США) установил, что фактором, обеспечивающим Т., являются молекулы ДНК. Эта работа — первое исследование, доказавшее роль ДНК как носителя наследственной информации.

  Помимо пневмококков, Т. обнаружена и изучена на некоторых других бактериях. Использование в экспериментах легко учитываемых генетических признаков (например, устойчивость к действию клеточных ядов, потребность в определённых факторах роста), а также применение ДНК с радиоизотопной меткой позволили дать Т. количественную оценку. Т. у бактерий рассматривают как сложный процесс, включающий следующие стадии: фиксация молекул ДНК клеткой-реципиентом; проникновение ДНК внутрь клетки; включение фрагментов трансформирующей ДНК в хромосому клетки-хозяина; формирование «чистых» трансформированных вариантов. Фиксация ДНК происходит на особых участках клеточной поверхности (рецепторах), число которых ограничено. Связанная с рецепторами ДНК сохраняет чувствительность к действию добавленного в среду фермента дезоксирибонуклеазы, вызывающего её распад. Однако, спустя очень короткий срок (в пределах 1 мин ) после фиксации, часть ДНК проникает в клетку. Бактериальные клетки одного и того же штамма резко различаются по проницаемости для ДНК. Клетки данной бактериальной популяции, способные включать чужеродную ДНК, называются компетентными. Число компетентных клеток в популяции незначительно и зависит от генетических особенностей бактерий и фазы роста бактериальной культуры. Развитие компетенции связывают с синтезом особого белка, обеспечивающего проникновение ДНК в клетку.

Перейти на страницу:

Похожие книги

100 великих кладов
100 великих кладов

С глубокой древности тысячи людей мечтали найти настоящий клад, потрясающий воображение своей ценностью или общественной значимостью. В последние два столетия всё больше кладов попадает в руки профессиональных археологов, но среди нашедших клады есть и авантюристы, и просто случайные люди. Для одних находка крупного клада является выдающимся научным открытием, для других — обретением национальной или религиозной реликвии, а кому-то важна лишь рыночная стоимость обнаруженных сокровищ. Кто знает, сколько ещё нераскрытых загадок хранят недра земли, глубины морей и океанов? В историях о кладах подчас невозможно отличить правду от выдумки, а за отдельными ещё не найденными сокровищами тянется длинный кровавый след…Эта книга рассказывает о ста великих кладах всех времён и народов — реальных, легендарных и фантастических — от сокровищ Ура и Трои, золота скифов и фракийцев до призрачных богатств ордена тамплиеров, пиратов Карибского моря и запорожских казаков.

Андрей Юрьевич Низовский , Николай Николаевич Непомнящий

История / Энциклопедии / Образование и наука / Словари и Энциклопедии
100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука