Читаем Большая Советская Энциклопедия (УГ) полностью

  В 1778 К. Шееле , нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. У. был признан химическим элементом в 1789 Лавуазье. Латинское название carboneum У. получил от carbo — уголь.

  Распространение в природе. Среднее содержание У. в земной коре 2,3x10-2 % по массе (1x10-2 в ультраосновных, 1x10-2 — в основных, 2x10-2 — в средних, 3x10-2 — в кислых горных породах). У. накапливается в верхней части земной коры (биосфере): в живом веществе 18% У., древесине 50%, каменном угле 80%, нефти 85%, антраците 96%. Значительная часть У. литосферы сосредоточена в известняках и доломитах.

  Число собственных минералов У. — 112; исключительно велико число органических соединений У. — углеводородов и их производных.

  С накоплением У. в земной коре связано накопление и многих др. элементов, сорбируемых органическим веществом и осаждающихся в виде нерастворимых карбонатов, и т.д. Большую геохимическую роль в земной коре играют CO2 и угольная кислота. Огромное количество CO2 выделяется при вулканизме — в истории Земли это был основной источник У. для биосферы.

  По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает У. из недр (уголь, нефть, природный газ), так как эти ископаемые — основной источник энергии.

  Огромное геохимическое значение имеет круговорот У. (см. ниже раздел Углерод в организме и ст. Круговорот веществ ).

  У. широко распространён также в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.

  Физико и химические свойства. Известны четыре кристаллические модификации У.: графит, алмаз, карбин и лонсдейлит. Графит — серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. Построен из кристаллов гексагональной структуры: а=2,462A, c=6,701A. При комнатной температуре и нормальном давлении (0,1 Мн/м2 , или 1 кгс/см2 ) графит термодинамически стабилен. Алмаз — очень твёрдое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решётку: а = 3,560 A. При комнатной температуре и нормальном давлении алмаз метастабилен (подробно о структуре и свойствах алмаза и графита см. в соответствующих статьях). Заметное превращение алмаза в графит наблюдается при температурах выше 1400 °С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °С графит возгоняется. Жидкий У. может быть получен при давлениях выше 10,5 Мн/м2 (105 кгс/см2 ) и температурах выше 3700 °С. Для твёрдого У. (кокс , сажа , древесный уголь ) характерно также состояние с неупорядоченной структурой — так называемый «аморфный» У., который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей «аморфного» У. выше 1500—1600 °С без доступа воздуха вызывает их превращение в графит. Физические свойства «аморфного» У. очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоёмкость, теплопроводность и электропроводность «аморфного» У. всегда выше, чем графита. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9—2 г/см3 ). Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены.

  Конфигурация внешней электронной оболочки атома У. 2s2 2p2 . Для У. характерно образование четырёх ковалентных связей, обусловленное возбуждением внешней электронной оболочки до состояния 2sp3 . Поэтому У. способен в равной степени как притягивать, так и отдавать электроны. Химическая связь может осуществляться за счёт sp3 -, sp2 - и sp -гибридных орбиталей, которым соответствуют координационные числа 4, 3 и 2. Число валентных электронов У. и число валентных орбиталей одинаково; это одна из причин устойчивости связи между атомами У.

  Уникальная способность атомов У. соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соединений У., изучаемых органической химией .

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии