Читаем Большая Советская Энциклопедия (ВИ) полностью

Виртуа'льная температу'ра (от позднелат. virtualis — сильный, способный) влажного воздуха, такая температура сухого воздуха, при которой он имеет плотность, равную плотности рассматриваемого влажного воздуха при том же давлении. С помощью В. т. в задачах статики атмосферы действительный воздух заменяется сухим воздухом той же плотности, что приводит к упрощению барометрических формул . В. т. выше истинной температуры; она определяется в градусах абсолютной шкалы формулой: Tv = Т (1 + 0,605s ), где Т — истинная температура, s — удельная влажность. Применение В. т. имеет смысл лишь при большом содержании влаги в воздухе. При температурах ниже 0°С или малой относительной влажности можно считать В. т. равной истинной температуре.

Виртуальные перемещения

Виртуа'льные перемеще'ния, то же, что возможные перемещения .

Виртуальные переходы

Виртуа'льные перехо'ды в квантовой теории, переходы физической микросистемы из одного состояния в другое, связанные с рождением или уничтожением виртуальных частиц , т. е. частиц, существующих лишь в промежуточных, имеющих малое время жизни, состояниях (виртуальных состояниях).

  Г. Я. Мякишев.

Виртуальные состояния

Виртуа'льные состоя'ния в квантовой теории, короткоживущие промежуточные состояния микросистемы, в которых нарушается обычная связь между энергией, импульсом и массой системы. Среднее время жизни В. с. порядка ћ /∆E, где ∆E — отклонение энергии E от её значения, определяемого соотношениями: E = р 2 2/m 0 в нерелятивистской теории и E 2 = c 2 p 2 + с 4 m 2 0 в релятивистской (см. Относительности теория ), p — импульс, m 0 — масса системы, с   — скорость света, а ћ — постоянная Планка, деленная на 2p.

  Важнейший частный случай В. с. — состояние из одной или нескольких виртуальных частиц . В. с. обычно возникают как промежуточные состояния при столкновениях микрочастиц. Например, столкновение нейтронов с протонами при энергиях до 10—20 Мэв в существенной мере происходит путём образования и быстрого распада дейтрона в В. с.

  Г. Я. Мякишев.

Виртуальные частицы

Виртуа'льные части'цы, частицы, существующие в промежуточных, имеющих малую длительность состояниях, для которых не выполняется обычное соотношение между энергией, импульсом и массой. Другие характеристики В. ч. — электрический заряд, спин , барионный заряд и т.д. — такие же, как у соответствующих реальных частиц.

  Понятие В. ч. и виртуальных процессов занимает центральное место в современной квантовой теории поля . В этой теории взаимодействие частиц и их взаимные превращения рассматриваются как рождение или поглощение одной свободной частицей других (виртуальных) частиц. Любая частица непрерывно испускает и поглощает В. ч. различных типов. Например, протон испускает и поглощает виртуальные пи-мезоны (наряду с другими В. ч.) и благодаря этому оказывается окружённым облаком В. ч., число которых, вообще говоря, неопределённо.

  С точки зрения классической физики, свободная частица (частица, на которую не действуют внешние силы, т. е. покоящаяся или движущаяся равномерно и прямолинейно) не может ни породить, ни поглотить другую частицу (например, свободный электрон не может ни испустить, ни поглотить фотон), так как в таких процессах нарушался бы либо закон сохранения энергии, либо закон сохранения импульса. Действительно, покоящийся электрон имеет минимальную возможную энергию (энергию покоя, равную, согласно теории относительности, m0 с2 , где m0 — масса покоя электрона, с — скорость света). Поэтому такой электрон не может испустить фотон, всегда обладающий энергией: при этом нарушался бы закон сохранения энергии. Если электрон движется с постоянной скоростью, он также не может (за счёт своей кинетической энергии) породить фотон, так как в таком процессе нарушался бы закон сохранения импульса: потеря импульса электроном, связанная с потерей энергии на рождение фотона, была бы большей импульса фотона, соответствующего его энергии (из-за различия масс этих частиц). То же относится и к процессу поглощения фотона свободным электроном.

Перейти на страницу:

Похожие книги

100 знаменитых катастроф
100 знаменитых катастроф

Хорошо читать о наводнениях и лавинах, землетрясениях, извержениях вулканов, смерчах и цунами, сидя дома в удобном кресле, на территории, где земля никогда не дрожала и не уходила из-под ног, вдали от рушащихся гор и опасных рек. При этом скупые цифры статистики – «число жертв природных катастроф составляет за последние 100 лет 16 тысяч ежегодно», – остаются просто абстрактными цифрами. Ждать, пока наступят чрезвычайные ситуации, чтобы потом в борьбе с ними убедиться лишь в одном – слишком поздно, – вот стиль современной жизни. Пример тому – цунами 2004 года, превратившее райское побережье юго-восточной Азии в «морг под открытым небом». Помимо того, что природа приготовила человечеству немало смертельных ловушек, человек и сам, двигая прогресс, роет себе яму. Не удовлетворяясь природными ядами, ученые синтезировали еще 7 миллионов искусственных. Мегаполисы, выделяющие в атмосферу загрязняющие вещества, взрывы, аварии, кораблекрушения, пожары, катастрофы в воздухе, многочисленные болезни – плата за человеческую недальновидность.Достоверные рассказы о 100 самых известных в мире катастрофах, которые вы найдете в этой книге, не только потрясают своей трагичностью, но и заставляют задуматься над тем, как уберечься от слепой стихии и избежать непредсказуемых последствий технической революции, чтобы слова французского ученого Ламарка, написанные им два столетия назад: «Назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания», – остались лишь словами.

Александр Павлович Ильченко , Валентина Марковна Скляренко , Геннадий Владиславович Щербак , Оксана Юрьевна Очкурова , Ольга Ярополковна Исаенко

Публицистика / История / Энциклопедии / Образование и наука / Словари и Энциклопедии