Чтобы определить ускорение, испытываемое объектом, который движется с постоянной скоростью v
по кругу радиусом r, Ньютон воспользовался собственноручно изобретенным дифференциальным исчислением. Такое ускорение равно v2/r, оно направлено к центру круга. Яблоко у вас на ладони, которое кажется неподвижным, на самом деле летит со скоростью 30 км/с по этому колоссальному кругу, причем с ускорением. По второму закону Ньютона на яблоко должна действовать какая-то сила, и эта сила – гравитационное притяжение Солнца. Солнце тащит Землю по орбите со скоростью 30 км/c, а вместе с ней тащит и яблоко. Яблоко испытывает силу солнечной гравитации, точно как вы и я.Мы летим вокруг Солнца со скоростью 30 км/c. Учитывая, как велика эта скорость, кажется, что результирующее ускорение также должно быть огромным, но ускорение на самом деле невелико, поскольку радиус круга огромен. Давайте посчитаем. Скорость Земли равна 30 км/c или 30 000 м/c, а радиус земной орбиты – 150 000 000 000 м. По формуле v
2/r ускорение a равно (30 000 м/c)2/150 000 000 000 м = 0,006 м/с2, или 0,006 метра в секунду за секунду. Таким образом, скорость Земли ежесекундно меняется на 6 миллиметров в секунду. Величина крошечная. Галилей открыл, что тела падают на Землю под действием земного притяжения с ускорением примерно 9,8 метра в секунду за секунду, это значение гораздо больше. Следовательно, пусть мы и летим вокруг Солнца с огромной скоростью, Земля при этом ускоряется совершенно незначительно. Напротив, на американских горках наша скорость куда ниже 30 км/c, но радиус круга, по которому мы движемся, крохотный; подставив это меньшее значение r в формулу v2/r, получаем довольно большое ускорение, которое весьма ощутимо. (Так, если радиус горок – 10 метров, а вы летите по ним со скоростью 10 м/c, то получается ускорение 10 метров в секунду за секунду).Если попытаться проследить гравитационное воздействие Солнца, то складывается более тонкая ситуация. Солнечная гравитация сообщает одинаковое ускорение всем
телам на Земле – вам, книге, которую вы держите, яблоку на ладони. Все мы вращаемся по околосолнечной орбите свободного падения. Нам только кажется, что мы неподвижны; просто мы не замечаем этого движения, равно как не замечаем и ускорения.Но факт остается фактом: Земля вращается вокруг Солнца с ускорением, и это ускорение вычисляется по формуле v
2/r. Далее Ньютон применил третий закон Кеплера, чтобы определить, как сообщаемое Солнцем ускорение изменяется в зависимости от радиуса. Период орбитального вращения планеты (P) равен
P =
(2πr/v);
следовательно, орбитальный период вычисляется как расстояние, проходимое планетой по орбите (2πr
), деленное на скорость (v). Таким образом:P
пропорционально r/v иP
2 пропорционально r2/v2.Кеплер установил, что P
2 пропорционально a3, где a — большая полуось планетной орбиты. В данном случае земная орбита почти круговая, поэтому можно приблизительно взять r = a. В таком случае, подставив r вместо a, находим:P
2 пропорционально r3.ПосколькуP
2 также пропорционально r2/v2,r
2/v2 пропорционально r3.Разделив на r
, получаем:r
/v2 пропорционально r2.Обратив это выражение, находим, что
v
2/r (ускорение) пропорционально 1/r2.При помощи таких рассуждений, третьего закона Кеплера и элементарной алгебры мы показали, что гравитационное ускорение, сообщаемое Солнцем другому телу, удаленному от него на расстояние r
, обратно пропорционально квадрату этого расстояния; это и есть ньютоновский «закон обратных квадратов». Вот как его сформулировал сам Ньютон:…в это время я был в расцвете моих изобретательских сил и думал о математике и философии больше, чем когда-либо после. Из правила Кеплера о том, что периоды планет находятся в полуторной пропорции к расстоянию от центров их орбит, я вывел, что силы, удерживающие планеты на их орбитах, должны быть в обратном отношении квадратов их расстояний от центров, вокруг коих они вращаются.
Такие представления о гравитации Ньютон также применил к Земле и Луне. Вспомните знаменитое упавшее яблоко, вдохновившее Ньютона. Оно расположено на расстоянии одного земного радиуса от центра Земли и падает на Землю с ускорением 9,8 м/с2
. Луна расположена на расстоянии 60 земных радиусов от центра Земли. Если сила тяготения Земли убывает в пропорции 1/r2 (как и у Солнца), то на лунной орбите земное притяжение должно давать ускорение в (60)2 раз меньше тех 9,8 м/с2, которым равно ускорение свободного падения на поверхности Земли, то есть около 0,00272 метра в секунду за секунду.