Точно как и в случае с вращением Земли вокруг Солнца, можно рассчитать ускорение Луны, вращающейся вокруг Земли, взяв период вращения (27,3 дня) и радиус лунной орбиты (384 000 километров). Подставив эти числа в формулу v
2/r, получаем ускорение 0,00272 метра в секунду за секунду. Эврика! Как красиво все согласуется с моделью, где расчет велся от яблока. По словам самого Ньютона, два этих результата показались ему «весьма близко совпадающими». Одна и та же сила притягивает к Земле и яблоко, и Луну, причем траектория Луны искривляется и становится не прямолинейной, а круговой, что позволяет ей удерживаться на приблизительно концентрической околоземной орбите. Сила земного притяжения, под действием которой падает яблоко, распространяется и на орбиту Луны. Ньютон совершил это открытие, когда жил в доме бабушки, – Кембриджский университет в те годы был закрыт из-за чумы. Но он не опубликовал результаты своей работы. Вероятно, он был раздосадован, что наблюдения не вполне согласовывались с прогнозом – небольшое расхождение могло быть связано с тем, что Ньютон пользовался неточным значением земного радиуса. Как бы то ни было, опубликовать эти расчеты лишь много лет спустя уговорил Ньютона Эдмунд Галлей (в честь которого названа комета).Ньютон сформулировал закономерность, которую часто называют пафосным выражением «Закон всемирного тяготения
» – с ним вы познакомились в главе 2. Рассмотрим два объекта – например, Землю и Солнце. Расстояние между ними (1 а.е., или 1,5 × 108 км) примерно в 100 раз превосходит диаметр самого Солнца (1,4 × 106 км). Эти тела обладают соответственно массами MЗЕМЛ и МСОЛН.Ньютон обнаружил, что сила притяжения между двумя этими телами пропорциональна массе каждого из них и обратному квадрату расстояния r
между ними (как я уже говорил, он пришел к такому выводу, опираясь на третий закон Кеплера). «Пропорциональна» в данном случае означает, что сила будет включать константу, характеризующую пропорциональность, – она называется G, или «постоянная Ньютона», в честь сэра Исаака. Вот формула Ньютона, описывающая тяготение между Солнцем и Землей:
F
= GMЗЕМЛМСОЛН/r2.
Речь идет о силе притяжения; два тела притягиваются друг к другу, и, следовательно, эта сила направлена от первого тела ко второму и от второго к первому.
По третьему закону Ньютона эта формула охватывает как силу притяжения Земли к Солнцу, так и силу притяжения Солнца к Земле. Но Солнце неизмеримо массивнее Земли. По второму закону Ньютона ускорение есть сила, деленная на массу. Следовательно, ускорение Земли гораздо, гораздо больше ускорения Солнца, и скорость, сообщаемая Солнцу из-за такого ускорения, крошечная по сравнению со скоростью Земли (Солнце и Земля вращаются вокруг общего центра масс, но он находится под поверхностью Солнца. Солнце минимально колышется вокруг этого центра, тогда как Земля описывает вокруг Солнца большой круг).
Рис. 3.1. Ускорение Луны и ньютоновского яблока, падающего с дерева. Обратите внимание: в обоих случаях вектор ускорения (изменения скорости) направлен к центру Земли. Предоставлено Дж. Ричардом Готтом
Рассмотрим еще одно удивительное следствие из формулы Ньютона. По второму закону Ньютона сила гравитации, формулу которой мы записали чуть выше, равна произведению массы Земли (M
ЗЕМЛ) на ее ускорение, а при движении по кругу ускорение равно v2/r. Таким образом, формулу F = ma можно переписать:
GM
ЗЕМЛМСОЛН/r2= MЗЕМЛv2/r.
Обратите внимание: масса Земли присутствует и в левой, и в правой части тождества, поэтому ее можно сократить, и останется:
GМ
СОЛН/r2= v2/r.
Это означает, что ускорение Земли (GМ
СОЛН /r2= v2/r) не зависит от массы Земли. Это примечательный факт. Ускорение силы тяжести не зависит от массы ускоряющегося объекта, это касается и околосолнечных орбит, и тел, падающих на Землю в ее гравитационном поле, – все потому, что масса тела оказывается и в левой, и в правой части уравнения и, соответственно, сокращается. Если я брошу книгу и лист бумаги, то они будут испытывать одно и то же ускорение и должны падать с одинаковой скоростью, хотя книга гораздо массивнее. Галилей утверждал, что именно так и должно быть в вакууме. Так ли это на практике? Нет, книга и лист падают с разной скоростью из-за сопротивления воздуха. Сопротивление воздуха воздействует как на книгу, так и на лист, но поскольку книга гораздо массивнее, сопротивление воздуха ускорению книги будет невелико – в сущности, пренебрежимо. Однако если я положу лист бумаги на толстую книгу, так чтобы книга исключала соприкосновение листа бумаги с воздухом, и брошу их как одно целое, то они упадут вместе. Можете сами проверить!