Читаем Большое, малое и человеческий разум полностью

описывающую преобразование (аберрации) Лоренца, которое переводит окружности в окружности и одновременно сохраняет значения всех углов. Преобразования такого типа называют преобразованиями Мёбиуса. Мне бы хотелось лишь отметить простоту и изящество этой формулы, описывающей столь сложный параметр, каким выступает в данной ситуации величина и. Совершенно удивительным кажется то, что при указанных преобразованиях в специальной теории относительности конечная формула имеет очень простой вид, в то время как соответствующие преобразования аберрации в ньютоновской механике описываются очень сложными выражениями. Как это часто бывает в физике, переход к более фундаментальным понятиям и более точным теориям приводит к упрощению математического описания, хотя на первый взгляд такой переход должен сопровождаться усложнением формального аппарата. Примером этой важной закономерности может служить разительный контраст между понятиями относительности в механике Галилея и Эйнштейна.

Специальная теория относительности во многих отношениях не только значительно проще классической механики, но и выглядит гораздо изящнее с математической точки зрения (в частности, при рассмотрении процессов в рамках теории групп). В специальной теории относительности пространство-время является плоским, а все световые конусы выстраиваются вдоль траекторий, как было показано на рис. 1.8. При переходе к более сложной общей теории относительности (теории пространства-времени с учетом гравитации) ясная физическая картина на первый взгляд «мутнеет» и теряет свою простоту, так как световые конусы оказываются разбросанными по всему пространству (рис. 1.11). Ранее я говорил, что, развивая любую теорию все глубже и глубже, мы должны приходить к более простым математическим выражениям. Представленная мною картина пока выглядит ужасающе сложной, однако если мы проявим немного терпения, то убедимся, что математическая простота и изящество теории возникнут снова.


Рис. 1.11. Искривленное пространство-время.

Напомню вам основные положения эйнштейновской теории тяготения. Прежде всего, она основана на принципе эквивалентности Галилея. На рис. 1.12 я попытался изобразить Галилея, бросающего с вершины знаменитой Пизанской башни большой и маленький камни. Независимо от того, действительно ли Галилей проводил такие эксперименты, он совершенно ясно установил, понял и сформулировал правило, что оба камня долетят до поверхности Земли за одинаковое время, если не учитывать сопротивления воздуха при падении. Если бы вы находились на одном из этих камней, то второй казался бы вам неподвижно висящим в воздухе (для более наглядной демонстрации этого факта я пририсовал телекамеру к одному из камней). В наше время эффект свободного парения очень часто демонстрируют при репортажах с космических кораблей, и недавно я сам видел британского космонавта, свободно «плавающего» в пространстве рядом с огромным космическим аппаратом (полная аналогия с большим и маленьким камнями в опытах Галилея). Именно это явление и называют принципом эквивалентности.


Рис. 1.12.

а — Галилей бросает с наклонной Пизанской башни два камня (один с телекамерой); б — астронавт и космический корабль, плавающие в пространстве как бы без воздействия гравитации.

Рассматривая гравитацию в рамках опытов со свободным падением, мы вдруг понимаем, что в этих условиях она как бы полностью исчезает. Однако эйнштейновская теория вовсе не утверждает, что тяготение исчезает, она всего лишь говорит об исчезновении силы тяжести, что означает совершенно иное явление, которое можно назвать «приливным эффектом» гравитации.

Для дальнейшего изложения мне необходимо ввести еще несколько математических понятий. Мы говорим об искривлении пространства-времени, а процессы такого типа описываются тензором, который я для удобства назову Риманом и буду обозначать заглавной буквой R в простом уравнении, которое выпишу чуть ниже. Я не буду объяснять вам, в чем состоит физический смысл тензора кривизны Римана, обозначенного R, а только отмечу, что тензоры имеют некоторое число нижних индексов, вместо которых в уравнение поставлено соответствующее число точек (внизу справа от знака тензора). Тензор кривизны R можно разложить на две составляющие (одну из которых я назову кривизной Вейля, а вторую — кривизной Риччи), что позволяет мне выписать уравнение

Риман = Вейль + Риччи

R.... = C... +R'...g..,

где формально величины С и R' являются тензорами кривизны Вейля и Риччи, a g — так называемый метрический тензор.

Перейти на страницу:

Все книги серии Антология научно-популярной литературы

Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни
Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино. Для написания книги профессор Джим Аль-Халили собрал команду ученых и мыслителей, мировых лидеров в своих областях, в числе которых такие звезды, как Мартин Рис, Иэн Стюарт, Сэт Шостак, Ник Лейн и Адам Резерфорд. Вместе они представляют весь комплекс вопросов и достижений современной науки в этом поиске, и каждый из них вносит свой уникальный вклад.

Джованна Тинетти , Йэн Стюарт , Моника Грейди , Ник Лэйн , Сара Сигер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги