Наиболее существенным обстоятельством является то, что в физике используются два совершенно разных подхода. Для описания поведения микрообъектов мы используем квантовую механику (я обозначил ее на рисунке словами «квантовый уровень»), о которой подробнее рассказано в гл. 2. Большинство людей полагают, что квантовая механика является странной, загадочной и недетерминистической теорией, но это неверно. На самом деле, если вы рассматриваете события на квантовом уровне, то квантовая теория является совершенно точной и детерминистической. Наиболее известным ее соотношением является уравнение Шредингера, которое определяет поведение физического состояния квантовой системы (его называют просто
При больших масштабах мы используем представления классической физики, которая является совершенно детерминистической. Она включает в себя законы механики Ньютона, законы Максвелла (позволяющие ввести в физику понятия электричества, магнетизма и света), две теории относительности Эйнштейна (специальную теорию относительности, описывающую движение тел при больших скоростях, и общую теорию относительности для систем с мощными гравитационными полями), причем все эти законы выполняются при больших расстояниях с исключительно высокой точностью.
Отмечу также, что на рис. 1.5 я использовал термин «вычислимость» для характеристики и квантовой, и классической физики. В первых двух главах это понятие практически не используется, но оно имеет важное значение для задач, обсуждаемых в гл. 3, где мы и рассмотрим проблему «вычислимости» более внимательно.
Настоящая глава посвящена в основном эйнштейновской теории относительности, ее характерным особенностям, исключительной точности, а также поразительной изящности и элегантности. Однако сначала необходимо рассказать хотя бы очень кратко о ньютоновской физике. Вскоре после того, как Эйнштейн разработал общую теорию относительности, Картан показал, что ньютоновская теория гравитации также позволяет ввести представление о едином пространстве-времени. Физическая картина в механике Галилея и Ньютона позволяет представить пространство-время введением глобальной (всемирной) временной координаты, после чего состояние системы может описываться просто набором последовательных диаграмм (рис. 1.6), в которых различным моментам времени соответствуют сечения четырехмерного пространства-времени. Каждому такому пространственному сечению (т. е. плоскости на рис. 1.6) соответствует обычное евклидово трехмерное пространство. Характерной особенностью ньютоновского пространства-времени является то, что все пространственные «сечения» существуют в нем как бы одновременно.
Таким образом, например, все события, происходящие в полночь понедельника, лежат в нижней горизонтальной плоскости диаграммы; все, что происходит в полночь вторника, — на следующей плоскости и т. д. Временные сечения по оси времени дают просто последовательность евклидовых пространств во времени. Все наблюдатели (независимо от их способа передвижения в пространстве-времени) фиксируют одни и те же события одновременно, поскольку они видят одни и те же «срезы», или «сечения», единого пространства-времени.
Совершенно иначе обстоят дела в специальной теории относительности Эйнштейна, где время и, соответственно, полная картина пространства-времени перестают быть универсальными величинами, как в физике Ньютона. Для демонстрации существенной разницы этих теорий нам необходимо прежде всего ввести одно из важнейших представлений теории относительности — так называемый
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное