Читаем Большое, малое и человеческий разум полностью

Основная проблема состоит в том, что все сказанное фактически оказывается недостаточным для решения поставленной проблемы. Например, остается непонятным, почему наше сознание не воспринимает такие макроскопические суперпозиции. Давайте рассмотрим особый случай, когда величины w и z равны друг другу, т. е. когда состояние системы можно записать в виде некоторого простого алгебраического соотношения, изображенного на рис. 2.10, где показаны живой кот плюс мертвый кот (вместе с наблюдателем, который воспринимает живого кота), плюс наблюдатель, воспринимающий мертвого кота, плюс живой кот, минус мертвый кот вместе с наблюдателем, воспринимающим живого кота, минус наблюдатель, воспринимающий мертвого кота. Вы заявите, конечно, что все эти операции бессмысленны, поскольку они совершенно не похожи на наше восприятие действительности. А почему, собственно, такое описание является неверным? Ведь мы не знаем, что означает слово «восприятие», и не можем отрицать, что оно может подразумевать одновременное восприятие живого и мертвого кота. До тех пор, пока мы не поймем точно, что означает слово «восприятие», и не разработаем достаточно убедительную теорию, запрещающую такое смешанное восприятие (для этого нам необходимо выйти далеко за пределы теории, описанной ниже в гл. 3), предлагаемый подход не позволит нам понять восприятие столь разных состояний или их суперпозиций. Для теоретического описания необходимо иметь хотя бы какую-то теорию восприятия. Кроме того, существующая теория не может объяснить, почему для произвольных чисел w и z получаемые вероятности должны совпадать с квантовомеханическими вероятностями, определенными через квадраты модулей соответствующих величин. Следует помнить, что в конечном счете все эти вероятности должны представлять собой очень точно измеряемые величины.


Рис. 2.10.

Давайте вернемся к проблеме квантовых измерений и, в частности, к вопросу о квантовой запутанности. На рис. 2.11 приведена запись ЭПР-эксперимента в версии Бома, относящаяся, как уже отмечалось, к Z-тайнам квантовой механики. Проблема сводится к возможностям описания состояния двух частиц со спином ½, которые разлетаются в разные стороны. Полный спин системы равен нулю, поэтому, если мы вдруг узнаем, что спин одной из частиц направлен вверх, то из этого следует, что спин второй частицы направлен вниз. В этом случае квантовое состояние полной системы описывается произведением членов «вверх-здесь» и «вниз-там». Аналогично, состоянию «вниз-здесь» соответствует «вверх-там» (подразумевается, что для проекции спина частицы в состоянии «здесь» мы можем выбрать направления вверх/вниз). Для описания квантового состояния полной системы мы должны внести в рисунок знаки плюс-минус для этих положений (буквы Н и Т на рисунке означают «здесь» и «там», соответственно). В сущности, например, нам следовало бы использовать знак минус для того, чтобы полный спин пары частиц равнялся нулю при любом выборе направления проекции.


Рис. 2.11.

Предположим, что мы измеряем спиновое состояние частицы, попавшей в наш детектор «здесь», а вторая частица за это время улетела очень далеко, и точка «там» находится где-то на Луне! Пусть далее мой коллега на Луне включил детектор и измерил проекцию спина в направлении вверх/вниз. Если спин этой частицы направлен вниз, то это означает, что у первой частицы он был направлен вверх, поскольку обычно предполагается, что вектор состояний частицы представляет собой смесь равновероятных состояний (спин-вверх и спин-вниз).

Для описания систем с такими смешанными состояниями в квантовой механике применяется стандартный метод, основанный на использовании так называемой матрицы плотности. В нашем случае матрица плотности, которую должен ввести первый наблюдатель (его можно условно назвать «я/здесь»), имеет вид, показанный на рис. 2.12. Множители ½ в правой части относятся к вероятности обнаружить, что спин «здесь» направлен соответственно вверх и вниз. При этом речь идет о совершенно обычных, классических вероятностях, отражающих степень нашего незнания относительно реального состояния изучаемой частицы. Эти вероятности представляют собой, как обычно, просто действительные числа (лежащие в интервале между 0 и 1), так что комбинация на рис. 2.12 представляет собой стандартную сумму вероятностей с заданным весом, а не сложную квантовую суперпозицию с комплексными коэффициентами. Отметим еще, что величины типа | < и < | (с угловыми скобками, направленными вправо и влево), которые умножаются на соответствующие вероятности (равные ½), были введены Дираком и названы им кет-вектором и бра-вектором, соответственно. В общем случае бра-вектор представляет собой комплексно сопряженный кет-вектор.


Рис. 2.12.

Перейти на страницу:

Все книги серии Антология научно-популярной литературы

Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни
Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино. Для написания книги профессор Джим Аль-Халили собрал команду ученых и мыслителей, мировых лидеров в своих областях, в числе которых такие звезды, как Мартин Рис, Иэн Стюарт, Сэт Шостак, Ник Лейн и Адам Резерфорд. Вместе они представляют весь комплекс вопросов и достижений современной науки в этом поиске, и каждый из них вносит свой уникальный вклад.

Джованна Тинетти , Йэн Стюарт , Моника Грейди , Ник Лэйн , Сара Сигер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги