Прежде всего давайте подумаем о том, насколько вообще правдоподобно или вероятно существование чего-то невычислимого в нашем понимании. Позвольте мне привести в качестве примера очень простую и симпатичную шахматную задачу. Вы знаете, что компьютеры уже неплохо играют в шахматы. Однако самый мощный современный шахматный компьютер «ДипСот», решая приведенную на рис. 3.5 задачу, начинает делать очень глупые ходы. Легко видеть, что в этой позиции черные имеют огромное материальное преимущество (две лишние ладьи и слона), которое, однако, не имеет никакого значения для исхода партии, поскольку белые пешки «намертво» блокируют черные фигуры. Пока белый король спокойно «бродит» за барьером из своих пешек, белые просто не могут проиграть. Однако компьютер «ДипСот» первым же ходом за белых взял черную ладью, после чего положение белых стало безнадежным. Причина, конечно, состоит в том, что компьютер запрограммирован на действие (ход за ходом) до некоторой глубины расчета, после чего он вновь начинает считать пешки и т. п. В принципе приведенный пример не очень удачен, так как если бы компьютер мог считать на очень много ходов вперед, он не ошибся бы (в конце концов, шахматы относятся именно к «вычислимым» играм). Однако заметьте, что человек-шахматист практически сразу видит барьер из пешек, понимает его непроницаемость и значение, после чего легко находит стратегию игры. Компьютер не обладает таким общим «пониманием» и начинает просто рассчитывать ход за ходом. Этот пример демонстрирует огромную разницу между простым вычислением и способностью к пониманию.
Разумеется, вы можете обучить ЭВМ использованию пешечного барьера, но проблема имеет более сложный и глубокий характер. В еще одном шахматном примере (рис. 3.6) белым следует поставить слона на b4 и, используя его вместо пешки, вновь создать непреодолимый пешечный барьер (вместо весьма заманчивого, но безнадежного взятия черной ладьи на а5). Задача очень похожа на предыдущую, но компьютер (даже если он умеет создавать пешечный барьер) опять начинает ошибаться, поскольку эта задача требует значительно более высокого уровня понимания. Вы можете возразить, что при желании в программу можно ввести все уровни понимания, и вы были бы правы, если бы рассмотрение относилось только к шахматным задачам. Повторю, что шахматы относятся к «вычислимым» играм, поэтому при достаточно мощном компьютере и хорошей программе можно (по крайней мере, в принципе) рассчитать до конца все вероятности. Пока это никому не удалось проделать, однако нас устроит и принципиальная возможность получения такого решения в будущем. Тем не менее, я надеюсь, вы почувствовали, что в термине «понимание» содержится нечто, не сводящееся к прямому расчету. Совершенно определенно можно сказать, что человеческий подход к решению даже таких простых шахматных задач существенно отличается от компьютерного.
Можно ли привести еще более сильные доводы в пользу того, что наше понимание содержит в себе нечто большее, чем набор вычислительных операций? Мне не хочется тратить слишком много времени на доказательство этого утверждения, однако это настолько важно для всей моей концепции, что я приведу еще в качестве примера несколько чисто математических задач. Читателю, заинтересовавшемуся проблемой связи мышления и вычислительных операций, я рекомендую прочитать мою книгу «Тени разума», где первые 200 страниц посвящены детальному и всестороннему обзору аргументации сторон в многочисленных дискуссиях по этому поводу.
Давайте поговорим о
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное