В дозвуковом потоке самолет при движении вызывает изменения давления окружающего воздуха, возмущения, которые расходятся во все стороны, обгоняют его, двигаясь со скоростью звука. В сверхзвуковом — эти изменения не могут перегнать самолет, ибо он сам летит быстрее звука.
Но ведь части самолета взаимно влияют друг на друга при обтекании. У биплана, скажем, крылья обтекаются различно, не так, как каждое из них в отдельности. Возмущения от одного крыла доходят до другого и обратно. А для сверхзвукового потока можно устроить такой биплан, в котором крылья «мешать» друг другу не будут.
Какую же форму должен будет иметь сверхзвуковой самолет?
Предполагают, что это будет самолет с удлиненным веретенообразным фюзеляжем, тонкими, стреловидными, небольшими крыльями, имеющими профиль в виде ромба или треугольника. Возможно, что это будет «летающее крыло» — треугольник, если посмотреть на него сверху, или «летающий фюзеляж», у которого подъемная сила создается реактивной тягой двигателя. Возможно, что оперение переместится из хвостовой части фюзеляжа вперед.
Еще трудно себе представить такую машину. Но как сейчас мы уже привыкли к «необычным» самолетам околозвуковых скоростей, так станут в будущем привычными и новые сверхзвуковые самолеты. И так же, как аэродинамика справилась с задачей создания самолета больших околозвуковых скоростей, — справится она и с задачей полета быстрее звука.
Не только новые формы, но и новый двигатель будет нужен для сверхзвукового полета. Ориентировочные подсчеты показывают, что понадобятся мощности порядка 18–24 тысяч лошадиных сил.
Есть ли двигатель такой мощности?
Да. Это прямоточный воздушно-реактивный двигатель и ракетный двигатель на жидком топливе.
Воздух, идущий в воздушно-реактивный двигатель, надо сжать. При сверхзвуковой скорости воздух сожмется благодаря скачку уплотнения, который «сядет» у входа в двигатель. За скачком скорость будет уже дозвуковой. Если дальше воздух пойдет через расширяющийся канал, то скорость его еще упадет, а давление возрастет. И в следующую часть двигателя — камеру сгорания — поступает сжатый воздух. Остается впрыснуть топливо, зажечь его и заставить газы вытекать через сопло. Отдача вытекающего газового потока создает тягу.
Такой прямоточный двигатель, самый простой из воздушно-реактивных, появится на сверхзвуковом самолете.
Предполагают, что вес его составит всего 0,05 килограмма на лошадиную силу. Это примерно в 10 раз меньше, чем у современного поршневого двигателя с винтом. При небольшом весе, всего 1 200 килограммов, огромная мощность — 24 тысячи сил. Двигатель с газовой турбиной такой мощности весил бы вдвое больше.
Прямоточный двигатель на малых скоростях беспомощен: слишком мал тогда напор воздуха, мало его сжатие. Поэтому стартовые двигатели-ускорители будут поднимать самолет в воздух. С ростом скорости сильнее давление воздуха — и двигатель начнет работать.
Можно ожидать, что это будет лучший двигатель для сверхзвуковых скоростей — достаточно мощный, легкий и простой, чтобы обеспечить полеты на высотах в два-три десятка километров со скоростью в 2–3 тысячи — километров в час.
А чтобы полететь еще быстрее, нужно летать еще выше.
И до сих пор борьба за скорость полета была в то же время борьбой за высоту.
Сопротивление воздуха зависит не от одной только скорости, но и от плотности среды. Воздух — друг, он создает подъемную силу, и в то же время враг — мешает полету. В разреженном воздухе легче летать, чем в плотном, — меньше сопротивление.
Современные самолеты оборудуются герметическими кабинами, дающими возможность человеку жить на больших высотах, в стратосфере.
Герметическая кабина — это маленький кусочек земного мира в стратосфере, где гибнет все живое. В ней искусственно создается атмосфера: нагнетатель накачивает воздух, поддерживает постоянное давление в кабине. Бывают кабины, где воздух не засасывается снаружи, а очищается от углекислого газа химическим очистителем и обогащается кислородом, запасенным в баллонах.
Но воздухом, кислородом дышит не только человек. Им дышит и двигатель.
Чем выше, чем разреженнее воздух, тем меньше кислорода в нем, и двигатель, которому нужен воздух для сгорания топлива, будет задыхаться уже на высоте в 5–6 километров.
Инженеры снабдили поршневой авиационный мотор нагнетателем, сжимающим и подающим воздух в цилиндры, помогающим мотору дышать. В газотурбинном двигателе есть свой нагнетатель — компрессор. В прямоточном его нет, здесь воздух сжимается скоростным напором.
Плотность воздуха, однако, быстро падает с высотой. Поднявшись на 22 километра, наши отважные советские стратонавты оставили под собой 9/10 всей массы воздуха. На высоте около 50 километров давление в тысячу раз меньше, чем у поверхности Земли. На высоте 200–250 километров — в миллион раз.