Согласно Лакоффу и Нуньесу, главный инструмент, позволяющий продвинуться дальше врожденных способностей, – это конструирование
Когнитивисты подвели весьма солидную базу под ассоциацию нашей математики с человеческим разумом и против платонизма. Но вот что интересно: самый сильный, по моему мнению, довод против платонизма выдвигают не нейробиологи, а сэр Майкл Атья, один из величайших математиков ХХ века. Я уже упоминал вскользь о его аргументации в главе 1, но здесь хотелось бы остановиться на ней поподробнее.
Если бы пришлось выбирать одно-единственное понятие из нашей математики, которое с наибольшей вероятностью существует независимо от человеческого разума, на чем бы вы остановились? Большинство из нас, скорее всего, пришло бы к выводу, что это должны быть натуральные числа. Что может быть естественнее, «натуральнее», чем 1, 2, 3, …? Даже немецкий математик Леопольд Кронекер (1823–1891), склонный к интуиционизму, как известно, провозгласил: «Господь сотворил натуральные числа, все остальное – дело рук человека». Поэтому, если удастся доказать, что даже натуральные числа как понятие берут начало в человеческом разуме, это будет серьезный довод в пользу парадигмы «изобретения». Вот как это формулирует Атья (Atiyah 1995): «Представим себе, что разумом наделено не человечество, а какая-нибудь огромная одинокая медуза в глубинах Тихого океана. Все ее сенсорные данные определялись бы движением, температурой и давлением. Поскольку все это – чистейший континуум, в такой обстановке не может появиться ничего дискретного, и медузе нечего было бы считать». Иначе говоря, Атья убежден, что даже такое фундаментальное понятие, как натуральные числа, и то было
Возможно, то, что Атья привлекает для доказательства гипотетическую вселенную медузы, читателю не понравится. Возможно, читатель возразит, что Вселенная только одна, деваться из нее некуда и любое предположение следует изучать в контексте этой Вселенной. Однако это, в сущности, все равно что признать, что понятие натуральных чисел каким-то образом зависит от Вселенной человеческого опыта! Обратите внимание, что именно это и имеют в виду Лакофф и Нуньес, когда говорят, что математика «встроена».
Итак, я только что приводил доводы за то, что понятия нашей математики коренятся в человеческом разуме. Вероятно, вы спросите, почему же я раньше так настаивал, что математика по большей части открыта – именно такой точки зрения придерживаются платоники.
Изобретение и открытие
В повседневной жизни разница между открытием и изобретением иногда совершенно очевидна, а иногда несколько размыта. Никто не станет утверждать, будто Шекспир открыл Гамлета, а мадам Кюри изобрела радий. Однако же новые лекарства от некоторых болезней обычно принято называть открытиями, хотя на самом деле они зачастую появляются в результате тщательного синтеза новых химических соединений. Давайте остановимся на вполне конкретном примере из математики, который, думается мне, не только поможет прояснить, чем открытие отличается от изобретения, но и позволит взглянуть по-новому на процесс развития и прогресса математики.