Читаем Быть собой: новая теория сознания полностью

Диаграмма ниже демонстрирует пример распределения вероятностей для переменной х. Переменная в математике — это просто символ, который может принимать разные значения. Распределение вероятностей для х описывает вероятность того, что значения х будут располагаться в определенных пределах. Как видно на диаграмме, область значений можно изобразить в виде кривой. Вероятность того, что х находится в определенных пределах, задается площадью области под кривой, соответствующей этим пределам. В данном примере вероятность попадания х между двумя и четырьмя гораздо выше, чем вероятность его попадания между четырьмя и шестью. На графике распределения вероятностей общая площадь, лежащая под кривой, всегда равна единице. Это обусловлено тем, что при рассмотрении всех вероятных исходов какой-то непременно реализуется[132].

Распределение вероятностей может принимать самую разную форму. Распространенная разновидность таких форм, к которой относится и данная кривая, — нормальное, или гауссовское, распределение. Оно полностью описывается средним значением или медианой (значением на вершине кривой — в нашем случае это три) и прецизионностью (насколько далеко друг от друга расположены значения — чем выше прецизионность, тем меньше растянута кривая). Эти величины — среднее и прецизионность — называются параметрами распределения[133].

Рис. 8. Гауссовское распределение вероятностей

Нам это важно, поскольку байесовские убеждения можно с успехом представить в виде распределения Гаусса. В интуитивном смысле среднее означает содержание убеждения, а прецизионность — уверенность мозга по поводу этого убеждения. Сжатая заостренная кривая (высокая прецизионность) соответствует высокой уверенности в убеждении. Как мы еще увидим, именно в этой способности отражать уверенность, или надежность, заключена сила и действенность байесовского вывода.

Вернемся к примеру с гориллой. Теперь мы можем представить соответствующие априорные, условные и апостериорные вероятности как распределения вероятностей, каждое из которых будет характеризоваться средним значением и прецизионностью. Для каждого распределения среднее будет означать вероятность того, что объект окажется гориллой, а прецизионность — уверенность мозга в оценке этой вероятности[134].

Что происходит при появлении новых сенсорных данных? Процесс байесовского обновления данных лучше и проще будет изобразить графически. На следующей диаграмме пунктирная кривая представляет априорную вероятность встречи с гориллой. У этой кривой низкое среднее значение, указывающее на то, что гориллы здесь считаются редкостью, и относительно высокая прецизионность, говорящая о том, что уверенность в этом априорном убеждении высока. Прерывистая кривая — это условная вероятность, соответствующая входящим сенсорным данным. Здесь среднее значение выше, но ниже прецизионность: если бы навстречу вам действительно двигалась горилла, именно такие сенсорные данные вы бы и получали, но вы в этом не особенно уверены. И наконец, сплошная кривая — это апостериорная вероятность, представляющая вероятность того, что перед вами горилла, на основании имеющихся сенсорных данных. Апостериорная вероятность, как всегда, выводится с применением байесовского правила. При использовании распределения Гаусса применение байесовского правила сводится к перемножению пунктирной и прерывистой кривой, при этом площадь области под конечной кривой — апостериорной — должна сохраняться равной единице.

Рис. 9. Байесовский вывод с распределением Гаусса для наиболее вероятного предположения насчет встречи с гориллой

Обратите внимание, что пик кривой апостериорной вероятности ближе к пику априорной, чем пик условной. Это потому, что комбинация двух распределений Гаусса зависит и от среднего значения, и от прецизионности. В данном случае, поскольку у условной вероятности прецизионность относительно низкая — сенсорные сигналы, указывающие на наличие гориллы, оцениваются как ненадежные, — наиболее вероятное апостериорное предположение недалеко уходит от априорного. Но уже при следующем взгляде сенсорные данные, касающиеся гориллы, могут оказаться более отчетливыми, поскольку она приближается, и так как новая априорная вероятность — это прежняя апостериорная, то новая апостериорная — новое наиболее вероятное предположение — сдвинется ближе к версии «горилла». И так далее, пока не станет ясно, что пора уносить ноги.

Теорема Байеса обеспечивает критерий оптимальности для перцептивных умозаключений. Она задает наиболее оптимистичные сценарии того, что должен делать мозг, вычисляя наиболее вероятные источники входящих сенсорных данных, будь то горилла, красное кресло или чашка кофе. Однако это далеко не весь процесс. Теорема Байеса не в состоянии показать, как именно с точки зрения нейронных механизмов мозг проворачивает этот фокус с выдачей наиболее вероятного предположения.

Перейти на страницу:

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вторжение жизни. Теория как тайная автобиография
Вторжение жизни. Теория как тайная автобиография

Если к классическому габитусу философа традиционно принадлежала сдержанность в демонстрации собственной частной сферы, то в XX веке отношение философов и вообще теоретиков к взаимосвязи публичного и приватного, к своей частной жизни, к жанру автобиографии стало более осмысленным и разнообразным. Данная книга показывает это разнообразие на примере 25 видных теоретиков XX века и исследует не столько соотношение теории с частным существованием каждого из авторов, сколько ее взаимодействие с их представлениями об автобиографии. В книге предложен интересный подход к интеллектуальной истории XX века, который будет полезен и специалисту, и студенту, и просто любознательному читателю.

Венсан Кауфманн , Дитер Томэ , Ульрих Шмид

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Языкознание / Образование и наука