void send(string soapMsg) {sock << soapMsg;}
~HttpRequest() {delete sock_;}
private:
Socket* sock_;
};
void sendMyData(string soapMsg, string host) {
HttpRequest req(host);
req.send(soapMsg);
// Здесь делать ничего не требуется, так как когда req выходит
// за диапазон, все очищается.
}
int main() {
string s = "xml";
sendMyData(s, "www.oreilly.com");
}
Гарантии, даваемые конструкторами и деструкторами, представляют собой удобный способ заставить компьютер выполнить всю очистку за вас. Обычно инициализация объекта и выделение используемых ресурсов производится в конструкторе, а очистка — в деструкторе. Это нормально. Но программисты имеют склонность использовать последовательность событий «создание-открытие-использование-закрытие», когда пользователю класса требуется выполнять явные открытия и закрытия ресурсов. Класс файла является хорошим примером.
Примерно так звучит обычный аргумент в пользу RAII. Я легко мог бы создать в примере 8.3 свой класс HttpRequest
class HttpRequest {
public:
HttpRequest();
void open(const std::string& hostname);
void send(std::string soapMsg);
void close();
~HttpRequest();
private:
Socket* sock_;
};
При таком подходе соответствующая версия sendMyData
void sendMyData(std::string soapMsg, std::string host) {
HttpRequest req;
try {
req.open();
req.send(soapMsg);
req.close();
} catch (std::exception& e) {
req.close(); // Do something useful...
}
}
Здесь требуется выполнить больше работы без каких бы то ни было преимуществ. Этот дизайн заставляет пользователя писать больше кода и работать с исключениями, очищая ваш класс (при условии, что в деструкторе close
Подход RAII имеет широкое применение, особенно когда требуется гарантировать, что при выбрасывании исключения будет выполнен «откат» каких-либо действий, позволяя при этом не загромождать код бесконечными try/catch
void MyWindow : thisTakesALongTime() {
StatusBarMessage("Copying files...");
// ...
}
Все, что класс StatusBarMessage
StatusBarMessage
все равно выполнит работу. Компилятор гарантирует, что при выходе из области видимости стековой переменной для нее будет вызван ее деструктор. Без этого подхода автор thisTakesALongTime
должен был бы принять во внимание все пути передачи управления, чтобы неверное сообщение не осталось в окне при неудачном завершении операции, ее отмене пользователем и т.п. И снова повторю, что этот подход приводит к уменьшению кода и снижению числа ошибок автора вызывающего кода.RAII не является панацеей, но если вы его еще не использовали, то вы, скорее всего, найдете немало возможностей для его применения. Еще одним хорошим примером является блокировка. При использовании RAII для управления блокировками ресурсов, таких как потоки, объекты пулов, сетевые соединения и т.п., этот подход позволяет создавать более надежный код меньшего размера. На самом деле именно так многопоточная библиотека Boost реализует блокировки, делая программирование пользовательской части более простым. За обсуждением библиотеки Boost Threads обратитесь к главе 12.
8.4. Автоматическое добавление новых экземпляров класса в контейнер
Требуется хранить все экземпляры класса в едином контейнере, не требуя от пользователей класса выполнения каких-либо специальных операций.
Включите в класс статический член, являющийся контейнером, таким как list
. Добавьте в этот контейнер адрес объекта при его создании и удалите его при уничтожении. Пример 8.4 показывает, как это делается.#include
#include
#include
using namespace std;
class MyClass {