Читаем Частица на краю Вселенной полностью

Итак, мы уже знаем по крайней мере шесть лептонов, которые образуют три «семейства» или, как их называют, «поколения»: электрон и его нейтрино, мюон и его нейтрино и тау-частица и ее нейтрино. Совершенно естественно задаться вопросом, не обнаружится ли за ними еще четвертое, пятое и так далее поколения. Сейчас есть некоторые доказательства того, что этими тремя поколениями все лептоны исчерпываются. Известные нейтрино имеют очень малую массу – они, безусловно, намного легче электрона. Теперь понятно, как искать новые легкие частицы, тщательно анализируя распады более тяжелых частиц. Ученые посчитали, сколько видов нейтриноподобных частиц должно существовать, чтобы объяснить эти распады, и получили, что их должно быть три. Конечно, нельзя быть до конца уверенным, что где-то еще не скрываются и другие похожие частицы, допустим, с аномально большими массами, но скорее всего физики нашли все возможные нейтрино (и следовательно, число поколений лептонов исчерпывается тремя).

<p>Кварки и адроны</p>

Меж тем и адронная физика не стояла на месте. Появление ускорителей частиц в середине XX века привело к буму элементарных частиц. Были открыты пионы, каоны, эта-мезоны, ро-мезоны, гипероны и многие другие частицы. Уиллис Лэмб, произнося свою Нобелевскую лекцию в 1955 году, пошутил: «Раньше за открытие новой элементарной частицы обычно награждали Нобелевской премией, а теперь за это следует штрафовать на 10 000 долларов».

Все эти новые частицы были адронами, и, в отличие от лептонов, сильно взаимодействовали с нейтронами и протонами. Вскоре физики начали подозревать, что эти «понаехавшие» адроны вообще не очень «элементарные» частицы и в их основе лежит некая более глубокая базовая структура.

Загадка была разгадана в 1964 году Мюрреем Гелл-Манном и Джорджем Цвейгом, независимо друг от друга предположившими, что адроны состоят из более мелких частиц, названных кварками. Как и лептонов, кварков шесть типов, или, как принято говорить, шесть ароматов: верхний (up), нижний (down), очарованный (charm), странный (strange), истинный (top, truth) и прелестный (beauty, bottom). Верхние, очарованные и истинные кварки имеют электрический заряд +2/3, в то время как нижние, странные и прелестные кварки имеют заряд −1/3. Иногда их разбивают на две группы: кварки «верхнего типа» и «нижнего типа» соответственно.

Три поколения кварков Стандартной модели.

Более крупные частицы представлены более крупными кружками.

В отличие от лептонов каждый аромат кварков в действительности представляет собой не одну частицу, а триплет частиц. Три вида каждого кварка различают, приписав каждому виду определенный цвет: красный, зеленый и синий. Названия забавные, но никакого отношения к реальности они не имеют – на самом деле увидеть кварки невозможно, но если бы вам все-таки удалось это сделать, вы убедились бы, что они точно не раскрашены в разные цвета.

Кварки нельзя наблюдать по отдельности, а это значит, что они существуют только в некоторых комбинациях внутри адронов (явление конфайнмента), причем эти комбинации всегда «бесцветные». Протоны и нейтроны состоят из трех кварков. Протон – из двух верхних и одного нижнего, а нейтрон – из двух нижних и одного верхнего. Один из этих кварков будет красным, один – зеленым, и один – синим, а вместе они дают белый цвет, который считается бесцветным в принятой терминологии. Позже мы увидим, что внутри нуклонов появляются и исчезают «виртуальные» пары кварк-антикварк, но они возникают в виде комбинаций «кварк определенного цвета – антикварк противоположного цвета», так что общая «белизна» не нарушается.

Глядя на изображения лептонов и кварков, нельзя не заметить некоторые закономерности. В обоих случаях у нас есть шесть типов частиц. И эти шесть типов в точности разбиваются на три пары, по две частицы в каждой, причем в каждой паре электрический заряд отличается от заряда соседней пары на единицу. Можно ли найти более глубокое объяснение такой закономерности? Можно, по крайней мере отчасти. Две частицы в каждой паре – например, электрон и его нейтрино – были бы совершенно идентичными, если бы не вездесущее поле Хиггса, заполнившее пустое пространство. Такая закономерность – демонстрация роли поля Хиггса в качестве нарушителя симметрий, и в следующих главах этой книги мы эту роль рассмотрим более внимательно.

<p>«Неправильная» сила</p>

Все объекты вокруг нас обладают размером и формой, и этим они обязаны фермионам Стандартной модели. А вот взаимодействовать этим фермионам друг с другом позволяют именно силы и связанные с ними частицы – бозоны. Фермионы могут притягивать или отталкивать друг друга, перебрасываясь бозонами. Также они могут терять энергию или распадаться на другие фермионы, выплевывая какие-то бозоны. Без бозонов фермионы просто летели бы вечно каждый по своей прямой, не взаимодействуя ни с чем остальным во Вселенной. И причина, по которой Вселенная стала столь сложной и интересной, в том, что все эти силы разные, и они толкают и тянут фермионы дополняющими друг друга способами.

Перейти на страницу:

Все книги серии Universum

Растут ли волосы у покойника?
Растут ли волосы у покойника?

В науке часто возникают мифы, которые порой отличаются поразительной живучестью. Они передаются из поколения в поколение, появляясь на страницах книг, на интернетовских сайтах, звучат в научных докладах и в разговорах обычных людей.Именно таким мифам и посвятил свою книгу известный немецкий популяризатор науки Э. П. Фишер. Он рассказывает, почему весь мир полагает, что пенициллин открыл Александр Флеминг, а родители троечников утешают себя тем, что великий Эйнштейн в школе тоже не был отличником. Фишер говорит и о мифах, возникших в последние годы, например, о запрограммированности нашей жизни в генах или о том, что мы должны в день выпивать два литра воды. Вероятно, многие с Фишером где-то и не согласятся, но его книга наверняка заставит читателя улыбнуться, а потом задуматься о довольно серьезных вещах.2-е издание.

Эрнст Петер Фишер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Коннектом. Как мозг делает нас тем, что мы есть
Коннектом. Как мозг делает нас тем, что мы есть

Что такое человек? Какую роль в формировании личности играют гены, а какую – процессы, происходящие в нашем мозге? Сегодня ученые считают, что личность и интеллект определяются коннектомом, совокупностью связей между нейронами. Описание коннектома человека – невероятно сложная задача, ее решение станет не менее важным этапом в развитии науки, чем расшифровка генома, недаром в 2009 году Национальный институт здоровья США запустил специальный проект – «Коннектом человека», в котором сегодня участвуют уже ученые многих стран.В своей книге Себастьян Сеунг, известный американский ученый, профессор компьютерной нейробиологии Массачусетского технологического института, рассказывает о самых последних результатах, полученных на пути изучения коннектома человека, и о том, зачем нам это все нужно.

Себастьян Сеунг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги