Читаем Чего не знает современная наука полностью

Но вернемся к точкам бифуркации. Вооруженные новейшим «микроскопом», мы заглядываем в них… И видим там самый настоящий хаос. Динамический. Дело в том, что, прежде чем выйти на одну из траекторий, видимых «невооруженным глазом» на нашем дереве, система попадает в клубок, состоящий из бесконечного множества запутанных траекторий, и начинает крутиться в нем, как белка в колесе, беспорядочно перескакивая с нитки на нитку. Для того чтобы совершить такой скачок, бывает достаточно сколь угодно малого воздействия извне, ведь в клубке практически в каждой точке соприкасаются сразу несколько нитей, ведущих в самых разных направлениях.

Хаос – не экзотика, в своей жизни мы сталкиваемся с ним очень часто. Десять лет ты учился в школе, и всегда было более или менее известно, что будет завтра, а что – через месяц, через год… А потом жизнь вдруг взрывается: выпускные экзамены, бал – и ты вытолкнут во взрослый мир, живущий по своим суровым законам. Поступать в институт? В какой? Устраиваться на работу? Какую? Голова идет кругом, руки опускаются… Закончил институт, университет – проблемы те же. Переход на новую работу, сокращение штатов, пенсия… Надо строить жизнь заново – а как? Финансовый кризис выбивает из колеи уже не одного человека – вся страна превращается в разворошенный муравейник.

Поневоле задумаешься, нужна ли тебе такая свобода. В хаосе возможно все, здесь существует бесконечное множество вариантов развития, но что толку, если, перебирая вариант за вариантом, перескакивая с траектории на траекторию, ты не можешь вырваться из этого клубка, обреченный вращаться в нем, кажется, до скончания века?

Как же жить в мире хаоса?

«Ну, не все так плохо», – такой вывод можно сделать из анализа математических моделей. Выход все-таки есть. И даже не один – вспомним наше дерево. С точки зрения грубой модели движение по его ветвям означает изменение с течением времени некоторых параметров системы, описывающих ее «в целом», – для маятника это, например, положение центра тяжести. При подробном описании эти параметры являются «внешними», задающими общее состояние системы, они меняются медленно, но именно их изменение обеспечивает выход системы из хаоса. Изменение внешних параметров в математических моделях играет роль Судьбы, влекущей систему сквозь череду кризисов и этапов спокойного развития.

И что же, сидеть и ждать Судьбы? Можно прождать всю жизнь. Но есть и конструктивные соображения. Среди траекторий, переплетающихся в динамическом хаосе, всегда есть несколько жизнеспособных, соответствующих общему направлению эволюции системы, которые ведут к выходу на отрезок стабильного развития. Важно не ждать сложа руки, куда вывезет нас очередная кривая, а найти одну из этих «правильных» траекторий, и рано или поздно она, подобно нити Ариадны, непременно выведет нас из лабиринта. Все, что от нас требуется, это не сидеть на месте, а делать шаги в выбранном направлении. А еще – «спокойствие, только спокойствие!»: не паниковать, не дергаться, не перескакивать с нитки на нитку в поисках сиюминутной выгоды, а крепко держаться за путеводную нить, что бы ни происходило вокруг. Хаос – лишь один из этапов долгого пути эволюции, он не может длиться вечно – пока есть хоть кто-то, кто ищет из него выход.

…Бешеная пляска воды горного потока, клочья облаков, рвущиеся ветром, извивающиеся языки пламени… В их беспорядочном движении, казалось бы, нет никакой закономерности. Но стоит изменить масштаб – и мы увидим поток, стремящийся к морю, гигантские атмосферные вихри циклонов, костер…

Течет река времени. Рождаются и гибнут цивилизации, сменяя друг друга, подвластные законам Истории… Ручейки человеческих жизней, причудливо петляя, сливаются в речки, питающие собой реки побольше… Все они впадают в одну великую реку. Куда несет она свои воды?

Алексей Чуличков, д-р физ. – мат. наук, МГУ

<p>Знает ли Бог математику?</p>

Зачем мы изучаем математику? Чтобы нас не обсчитали в магазине или в банке? Да, наверное. Но для этого достаточно знать основные арифметические действия. А нам почему-то толкуют о геометрических теоремах, свойствах функций…

Можно ответить так: без математики не было бы науки, а значит, многих ее достижений, существенно облегчающих нашу жизнь. Ну и пусть бы тогда этой наукой занимались «яйцеголовые», их не так-то много и нужно. А всем-то зачем?

Перейти на страницу:

Похожие книги

1941: фатальная ошибка Генштаба
1941: фатальная ошибка Генштаба

Всё ли мы знаем о трагических событиях июня 1941 года? В книге Геннадия Спаськова представлен нетривиальный взгляд на начало Великой Отечественной войны и даны ответы на вопросы:– если Сталин не верил в нападение Гитлера, почему приграничные дивизии Красной армии заняли боевые позиции 18 июня 1941?– кто и зачем 21 июня отвел их от границы на участках главных ударов вермахта?– какую ошибку Генштаба следует считать фатальной, приведшей к поражениям Красной армии в первые месяцы войны?– что случилось со Сталиным вечером 20 июня?– почему рутинный процесс приведения РККА в боеготовность мог ввергнуть СССР в гибельную войну на два фронта?– почему Черчилля затащили в антигитлеровскую коалицию против его воли и кто был истинным врагом Британской империи – Гитлер или Рузвельт?– почему победа над Германией в союзе с СССР и США несла Великобритании гибель как империи и зачем Черчилль готовил бомбардировку СССР 22 июня 1941 года?

Геннадий Николаевич Спаськов

Публицистика / Альтернативные науки и научные теории / Документальное