Читаем Чего не знает современная наука полностью

Другая модель Солнечной системы построена на основе эмпирической формулы, в которую входят числа от 1 до 4, то есть образующие Тетраксис. Это правило в 1766 году предложил немецкий математик И. Тициус, но получило оно известность после того, как его впервые опубликовал немецкий астроном И. Боде в 1772 году. Правило связывает среднее расстояние а планеты от Солнца с ее порядковым номером и выглядит следующим образом:

a = 0.1 (2n*3 + 4),

где a – средний радиус орбиты планеты, выраженный в радиусах Земной орбиты (расстояние, равное среднему радиусу орбиты Земли, называется астрономической единицей). Здесь для Меркурия следует положить n = -, так что 2- = 0, для Венеры n = 0, так что 20 = 1, для Земли и Марса n = 1 и 2 соответственно, для Юпитера n = 4 и далее по порядку. Пропущенное значение n = 3 соответствует поясу астероидов, что дало, в частности, возможность предположить, что когда-то между Марсом и Юпитером обращалась еще одна планета, распавшаяся на части в результате космической катастрофы. Эта планета получила гипотетическое название Фаэтон.

Это правило достаточно точно описывает радиусы первых семи планет от Меркурия до Урана. Причина столь хорошего совпадения астрономам неизвестна.

Математика. Бог. Вселенная. Человек

Издавна считалось, что математика – язык, который в наилучшей степени может помочь нам понять законы прекрасного. Источником красоты является гармония, упорядочивающая все части, вообще говоря различные по природе, согласно совершенным соотношениям. Человек может стать счастливым, стремясь к красоте, которую он чувствует душой.

Эти положения легли в основу множества философских теорий эпохи Возрождения и более поздних. В качестве примера приведем теорию красоты одного из титанов Возрождения флорентинца Леона Батиста Альберти, гуманиста, философа, писателя, архитектора, скульптора, художника. В его теории математика играет ведущую роль: он считает, что законы природы выражаются определенными числами, а красота – идеальный образ числа и идеальный образец для художника.

Математику пытались использовать не только для описания основных принципов развития мира и человека, но и для познания Бога. Так, Николай Кузанский, исходя из того, что божественное присутствует везде, дал начало исследованиям по интегральному и дифференциальному исчислениям, пытаясь из бесконечно малых дифференциалов сложить единый интеграл. Формально эта схема была воплощена в трудах Ньютона и Лейбница.

Ученые Нового времени, несмотря на наступление позитивизма, также видели Бога в простых и красивых математических законах.

Для эмпирика Джона Локка существовали лишь три несомненные истины – наше собственное существование, существование Бога и истинность законов математики.

Широко известно высказывание Лейбница «Cum Deus calculat, fit mundus», что значит: «Как Бог вычисляет, так мир делает». Вслед за философами Средневековья, такими, например, как Фома Аквинский, Лейбниц считал, что Бог не может действовать вопреки законам логики, но он может повелеть все, что логически возможно, и это предоставляет ему величайшую широту выбора.

Ньютон считал, что математическая красота и сила законов механики, оптики и так далее является наилучшим подтверждением существования Бога. Рассуждая об аналогиях в устройстве музыки и цвета, он писал об устройстве музыки: «…в нем содержится нечто от гармонии цветов (о которой знают художники, но о которой сам я не имею достаточно определенного суждения), подобной, может быть, созвучию тонов. Посему правдоподобным кажется сходство между крайним пурпуром (фиолетовым. – А. Ч.) и краснотой, – концами цветов – и между концами октавы (каковая может почитаться унисоном)». Этим он, по сути, продолжил пифагорейскую традицию поиска математических законов гармонии.

Иммануил Кант, размышляя о возможностях познания мира, пришел к выводу, что математические понятия не могут быть извлечены из опыта, они априорны, а следовательно, всеобщи и необходимы. «Математика дает нам прекрасный пример того, как далеко мы можем продвинуться в априорном знании независимо от опыта».

Перейти на страницу:

Похожие книги

1941: фатальная ошибка Генштаба
1941: фатальная ошибка Генштаба

Всё ли мы знаем о трагических событиях июня 1941 года? В книге Геннадия Спаськова представлен нетривиальный взгляд на начало Великой Отечественной войны и даны ответы на вопросы:– если Сталин не верил в нападение Гитлера, почему приграничные дивизии Красной армии заняли боевые позиции 18 июня 1941?– кто и зачем 21 июня отвел их от границы на участках главных ударов вермахта?– какую ошибку Генштаба следует считать фатальной, приведшей к поражениям Красной армии в первые месяцы войны?– что случилось со Сталиным вечером 20 июня?– почему рутинный процесс приведения РККА в боеготовность мог ввергнуть СССР в гибельную войну на два фронта?– почему Черчилля затащили в антигитлеровскую коалицию против его воли и кто был истинным врагом Британской империи – Гитлер или Рузвельт?– почему победа над Германией в союзе с СССР и США несла Великобритании гибель как империи и зачем Черчилль готовил бомбардировку СССР 22 июня 1941 года?

Геннадий Николаевич Спаськов

Публицистика / Альтернативные науки и научные теории / Документальное