Имеется трудность в вопросе, который Кейнс, по-видимому, адекватно не рассмотрел, а именно: сообщает ли вероятность, относящаяся к посылкам, рациональное правдоподобие предложению, которое превращается в вероятное, и если да, то при каких обстоятельствах? Кейнс говорит, что так же бессмысленно говорить, что «p вероятно», как и говорить, что «p равно «или «p больше, чем». Согласно ему, здесь нет ничего аналогичного опущению истинной посылки в дедуктивном выводе. Тем не менее, он говорит, что если мы знаем h и знаем также, что p/h = а, то мы вправе придавать p «рациональную веру в соответствующей степени». Но когда мы поступаем так, мы больше не выражаем отношение p к h, мы пользуемся этим отношением для того, чтобы что-либо вывести относительно p. Это «что-либо» мы можем назвать «рациональным правдоподобием» и можем сказать, что «p рационально правдоподобно в степени а». Но если это должно быть истинным утверждением p, не предполагающим упоминания о h, тогда b не может быть произвольным. Ибо предположим, что P/h = a, а p/h' = a; должны ли мы при допущении, что h и h' известны, придавать p степень а или а' рационального правдоподобия? Невозможно, чтобы оба ответа были правильны при любом данном состоянии нашего знания.
Если верно, что «вероятность есть руководитель жизни», тогда при любом данном состоянии нашего знания должна быть одна вероятность, которая относится к p более существенным образом, чем любая другая, и эта вероятность не может быть относительной по отношению к произвольным посылкам. Мы должны сказать, что это есть вероятность, которая получается, когда h рассматривается как все наше относящееся к делу знание. Мы можем сказать: при любой данной совокупности предложений, составляющих определенное знание какого-либо лица, при том, что связь этой совокупности предложений называется n, имеется некоторое число предложений, не являющихся членами этой совокупности, которые имеют к ней отношения вероятности. Если p есть также предложение, a p/h = а, тогда для этого лица а есть степень рационального правдоподобия, принадлежащего p. Мы не должны говорить, что если h' есть некое истинное предложение, несколько отличающееся от h, которое известно лицу, о котором идет речь, и если p/h' = а', тогда для этого лица p имеет степень правдоподобия а'; оно будет иметь только эту степень правдоподобия для лица, знание которого, относящееся к делу, суммируется через h'. Со всем этим, однако, Кейнс, безусловно, согласится. Возражение на самом деле относится только к некоторой рыхлости формулировки, а не к чему-либо существенному в этой теории.
Более существенное возражение касается наших средств познания предложений, вроде таких, как p/h = а. Я сейчас не утверждаю априори, что мы не можем их знать; я интересуюсь только вопросом, как мы можем их знать. Нетрудно заметить, что если «вероятность» не может быть определена, то должны быть такие предложения вероятности, которые не могут быть доказаны и которые, следовательно, если принять их, должны быть среди посылок нашего познания. Это является общей чертой всех логически расчлененных систем. Каждая такая система по необходимости начинает с исходного аппарата не получивших определения терминов и недоказанных предложений. Ясно, что не получивший определения термин не может появиться в выводном предложении, если он не появился по крайней мере в одном из недоказанных предложений, тогда как нет необходимости в том, чтобы получивший определение термин появлялся в каком-либо недоказанном предложении. Например, пока считалось, что в арифметике участвуют термины, не получившие определения, приходилось считать, что в ней не должны быть также и недоказанные аксиомы: Пеано имел дело с тремя неопределенными терминами и пятью аксиомами. Но когда числа и сложение определяются логически, арифметика не нуждается в каких-либо недоказанных предложениях, кроме предложений логики.
Итак, в нашем случае если «вероятность» может быть определена, то возможно, что могут быть выведены все предложения, в которых это слово встречается; но если она не может быть определена, то должны быть — если мы в состоянии что-либо знать об этом — содержащие это слово предложения, которые мы знаем без свидетельства со стороны.