Читаем Человеческое познание его сферы и границы полностью

Индукция через простое перечисление представляет собой следующий принцип: «Если дано некоторое число n случаев а, которые оказались p, и если при этом не оказалось ни одного а, которое не было бы p, тогда два утверждения: (а) «следующее а будет p» и (б) «все а суть p» — оба имеют вероятность, которая повышается по мере увеличения n и стремится к достоверности как к пределу, по мере того как n стремится к бесконечности».

Я буду называть (а) «частной индукцией» и (б) «общей индукцией». Таким образом, (а) утверждает на основании нашего знания о смертности людей в прошлом, что, вероятно, г-н такой-то умрет, тогда как (6) утверждает, что, вероятно, все люди смертны.

Прежде чем перейти к более трудным или сомнительным вопросам, сформулируем некоторые довольно важные вопросы, которые могут быть решены без особых затруднений. Эти вопросы следующие:

1. Если индукция должна служить целям, которым, как мы думаем, она служит в науке, то «вероятность» должна быть так интерпретирована, что утверждение вероятности утверждает факт; это требует, чтобы связанный с этим род вероятности был выводным из истинности и ложности, в не был бы неопределимым, а это в свою очередь делает конечно-частотную интерпретацию более или менее неизбежной.

2. Индукция, по-видимому, недействительна в применении к ряду натуральных чисел.

3. Индукция недействительна в качестве логического принципа.

4. Индукция требует, чтобы случаи, на которых ока основывается, были даны в виде последовательности, а не только в виде класса.

5. Всякое ограничение, которое может оказаться необходимым, чтобы сделать принцип действенным, должно быть сформулировано в терминах интенсивности, посредством которой определяются классы а и p, а не в терминах экстенсивности.

6. Если число вещей во вселенной конечно или если какой-либо ограниченный класс является единственным, относящимся к индукции, тогда индукция для достаточного числа n становится доказательной; но на практике это не имеет значения, потому что тогда относящиеся к делу n были бы большими по числу, чем это может когда-либо быть в любом действительном исследовании.

Я теперь перехожу к доказательству этих предложений.

1. Если «вероятность» берется как неопределимая, то мы должны допустить, что невероятное может произойти и что, следовательно, предложение вероятности ничего не говорит нам о ходе вещей в природе. Если принять этот взгляд, то индуктивный принцип может быть правильным, но всякий вывод, сделанный в соответствии с ним, может все же оказаться ложным; это невероятно, но не невозможно. Следовательно, мир, в котором индукция оказывается истинной, эмпирически не отличим от мира, в котором она оказывается ложной. Из этого следует, что никогда не может быть какого-либо свидетельства в пользу или против этого принципа и что он не может помочь нам сделать вывод о том, что произойдет. Если этот принцип должен служить своей цели, то мы должны интерпретировать слово «вероятный» как обозначающее «то, что обычно действительно происходит»; это значит, что мы должны интерпретировать вероятность как частоту.

2. Индукция в арифметике. В арифметике легко дать примеры таких индукций, которые ведут к истинным заключениям, и таких, которые ведут к ложным. Джевонс приводит два примера:

5, 15, 35, 45, 65, 95

7, 17, 37, 47, 67, 97

В первой строке каждое число оканчивается на 5 и делится на 5; это может привести к предположению, что каждое число, оканчивающееся на 5, делится на 5, что является истинным. Во втором ряду каждое число оканчивается на 7 и является простым; это могло бы привести к предположению, что каждое число, оканчивающееся на 7, является простым, что было бы ложным.

Или возьмем следующий пример: «Каждое четное целое число является суммой двух простых». Это истинно в каждом случае, в каком это было проверено, а число таких случаев громадно. Тем не менее остается обоснованное сомнение относительно того, является ли это всегда истинным.

В качестве поразительного примера недостаточности индукции в арифметике возьмем следующее: пусть Пи(х) = числу простых чисел больше или равно х

Известно, что когда х — велико, Пи(х) и li(х) почти равны. Также известно, что для каждого известного простого числа

Пи (х) меньше li(x).

Гаусс предположил, что это неравенство имеет место всегда. Это было проверено для всех простых числе до 107 и для очень многих сверх этого, и не было обнаружено ни одного частного случая ложности этого предположения. Тем не менее Литлвуд доказал в 1912 году, что имеется бесконечное число простых чисел, для которых это предположение оказывается ложным, а Скьюз (Skewes)' доказал, что оно ложно для некоторых чисел меньших чем

34

10

10

10

Видно, что хотя предположение Гаусса и оказалось ложным, все же оно имело в свою пользу гораздо лучшее индуктивное свидетельство, чем какое существует в пользу наших даже наиболее твердо установленных эмпирических обобщений.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже