Читаем Человеческое познание его сферы и границы полностью

Даже не вдаваясь так глубоко в теорию чисел, легко сконструировать ложные индукции в арифметике в любом нужном количестве. Например, ни одно число, меньшее чем n, не делится на n. Мы можем сделать n как угодно большим, и таким образом, получить сколько угодно свидетельств в пользу обобщения: 'Ни одно число не делится на n».

Ясно, что любые n целых чисел должны обладать многими общими свойствами, которыми большинство целых чисел не обладает. Для начала, если m есть наибольшее из них, то все они обладают бесконечно редким свойством быть не большими чем m. Следовательно, ни общая, ни частная индукции не действенны в применении к целым числам, если свойство, к которому индукция должна быть применена, не является как-либо ограниченным. Я не знаю, как сформулировать такое ограничение, и все же любой хороший математик в отношении свойства, по видимости допускающего действенную индукцию, будет иметь чувство, аналогичное обыденному здравому смыслу. Если вы заметили, что 1 + 3 = 22, 1 + 3 + 5 = З2, 1 + + 3 + 5 + 7 = 42, то вы будете склонны предположить, что

1 + 3 + 5 + … + (2n — 1) = N2,

и легко может быть доказано, что это предположение правильно. Подобным же образом, если вы заметили, что 13 + 23 = З2, 13 + 23 + З3 = б2, 13 + 23 + З3 + 43 = 102, то вы можете предположить, что сумма первых я кубов всегда равна какому-либо числу в квадрате, и это опять-таки легко доказать. Математическая интуиция никоим образом не является безошибочной в отношении таких индукций, но у хороших математиков она, по-видимому, чаще бывает правильной, чем ошибочной. Я не знаю, как ясно выразить то, что руководит математической интуицией в таких случаях, А пока мы можем только сказать, что никакое известное ограничение не сделает индукцию действенной в применении к натуральным числам.

3. Индукция не действенна в качестве логического принципа. Ясно, что если мы можем выбрать наш класс бета по желанию, то мы легко можем убедиться, что наша индукция будет ошибочной. Пусть а1, а2, …, an» будет до сего времени наблюденными членами класса а, все члены которого оказались членами класса p, и пусть an+1) будет следующим членом класса альфа. Поскольку дело касается чистой логики, класс бета может состоять только из членов а1, а2, …, an» или может состоять из всего, что есть во вселенной, кроме an+1; или может состоять из любого класса, промежуточного для этих двух. В любом из этих случаев индукция в отношении an+1) будет ложной.

Ясно (как может сказать возражающий), что класс бета не должен быть тем, что можно было бы назвать «искусственным» классом, то есть классом, частично определяемым через объем. В случаях определенного рода, наблюдаемых в индуктивном выводе, p всегда является классом, который известен по содержанию, а не по объему, кроме случаев, касающихся наблюденных членов а1, a2, …, an и таких других членов класса p, но не членов класса альфа, которые могли наблюдаться.

Очень легко построить явно недейственные индукции. Деревенский житель мог бы сказать: весь скот, который я когда-либо видел находится в Херефордшире; следовательно, вероятно, весь скот находится в этой части страны. Или мы могли бы утверждать: ни один человек, живущий сейчас, не умер, следовательно, вероятно, все люди, живущие сейчас, бессмертны. Ошибки в таких индукциях очень заметны, но они не были бы ошибками, если бы индукция была чисто логическим принципом.

Ясно поэтому, что для того, чтобы индукция не была явно ложной, класс p должен иметь определенные характерные признаки или должен каким-либо особым образом относиться к классу а. Я не утверждаю, что с этими ограничениями этот принцип должен быть истинным; я утверждаю, что без этих ограничений он должен быть ложным.

4. В эмпирическом материале явления идут во временном порядке и, следовательно, всегда составляют последовательность. Когда мы решаем вопрос, применима ли индукция в арифметике, мы, естественно, думаем о числах как расположенных в порядке величины. Но если бы мы могли расположить их произвольно, мы могли бы получить странные результаты; например, как мы видели, мы можем доказать, что бесконечно невероятным является то, что число, выбранное наудачу, не будет простым.

Для формулировки частной индукции существенно, чтобы был следующий случай, который требует упорядочения в последовательности.

Если должно быть какое-то оправдание для общей индукции, то необходимо чтобы первые n членов класса а оказались членами класса p, а не просто чтобы а и p имели бы n членов общих. Это опять-таки требует расположения в последовательности.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже