Читаем Человеческое познание его сферы и границы полностью

Что касается научного использования индукции, я признаю достигнутые Кейнсом результаты, разъясненные в одной из предшествующих глав. На этой стадии исследования, может быть, будет полезно напомнить эти результаты.

Кейнс допускает некое обобщение вроде «все А суть В', для которого до каких-либо наблюденных случаев имеется вероятность P0. Он допускает, далее, что некоторое число благоприятных случаев х1, х2, x3, …, Хn наблюдалось и что не наблюдалось ни одного неблагоприятного случая. Вероятность обобщения после первого благоприятного случая должна стать P1, после первых двух P2, и так далее так что Pn есть вероятность этого обобщения после n благоприятных случаев. Мы хотим знать, при каких обстоятельствах рn стремится к 1 как своему пределу, когда n безгранично возрастает. Для этой цели мы должны учесть вероятность того, что мы наблюдали бы n благоприятных случаев и ни одного неблагоприятного, если бы обобщение было ложным. Допустим, что мы назовем эту вероятность qn. Кейнс показывает, что Pn стремится к 1 как своему пределу, когда n возрастает, если отношение qn к Pn стремится к нулю, по мере того, как n возрастает. Это требует, чтобы P0 было конечным и чтобы qn стремилось бы к нулю по мере возрастания n. Одна индукция не может сказать нам, когда — если вообще это возможно — эти условия выполняются.

Рассмотрим условие, что р0 должно быть конечным. Это значит, что предлагаемое обобщение «все А суть В», до того как мы наблюдали какие-либо случаи — благоприятные или неблагоприятные, — имеет кое-что в свою пользу, так что во всяком случае оно является предположением, заслуживающим исследования. Вероятность р0, согласно трактовке Кейнса, относится к общим данным h, которые, по-видимому, могут включать в себя все что угодно, кроме тех случаев А, которые суть или не суть В. Очень трудно удержаться от мысли о данных, как состоящих, по крайней мере отчасти, из аналогичных хорошо установленных обобщений, из которых мы выводим свидетельство в пользу обобщения 'все А суть В». Например, вы хотите доказать, что всякая медь является проводником электричества. До экспериментирования с медью вы испытываете многие другие элементы и находите, что каждый элемент по-своему ведет себя в отношении проведения электричества. Вы из этого индуктивно заключаете, что или всякая медь проводит электричество, или никакая медь не является его проводником; ваше обобщение, следовательно, имеет доступную оценке вероятность еще до того, как наблюдения начались. Но поскольку это доказательство пользуется индукцией, оно бесполезно для нашей цели. До того как мы сделаем индукцию, что все элементы по-своему ведут себя в отношении проведения электричества, мы должны спросить, какова была вероятность этой индукции до того, как мы имели какие-либо случаи убедиться в ее истинности или ложности. Мы можем в свою очередь подвести эту индукцию под более широкую: мы можем сказать: «Было испытано большое число свойств, и в отношении каждого из этих свойств было найдено, что каждый элемент ведет себя своеобразно; следовательно, вероятно, что проведение электричества также является таким свойством». Но этому процессу подведения индукций под более общие в практике должен быть предел, и где бы мы ни остановились, при любом данном состоянии нашего знания, данные, суммированные в h Кейнса, не должны быть такими, чтобы иметь отношение к делу; только в том случае сделанная индукция признается.

Мы, следовательно, должны искать такие отличающиеся от индукции принципы, чтобы при наличии определенных данных, не имеющих формы «все А суть В', обобщение «все А суть В' имело бы конечную вероятность. При наличии таких принципов и обобщения, к которому они применяются, индукция может сделать обобщение вероятным в возрастающей степени с вероятностью, приближающейся к достоверности как своему пределу, когда число благоприятных случаев неопределенно возрастает. В таком доказательстве принципы, о которых идет речь, являются посылками, к которым индукция не принадлежит, так как в той форме, в которой она используется, она представляет собой аналитическое следствие конечно-частотной теории вероятности.

Наша задача, следовательно, заключается в нахождении принципов, которые будут делать соответствующие обобщения вероятными еще до свидетельства в их пользу.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже