Читаем Человек, который разгадал рынок. Как математик Джим Саймонс заработал на фондовом рынке 23 млрд долларов полностью

В теории минимальных поверхностей, исследованием которой Саймонс начал заниматься с первого семестра, став преподавателем МТИ, дано важное описание дифференциальных уравнений в частных производных применительно к геометрии. Стандартным примером из этой области является поверхность мыльной пленки, покрывающей проволочную рамку, которую опустили, а затем достали из мыльного раствора. Такая поверхность имеет наименьшую площадь, по сравнению с любой другой поверхностью, ограниченной аналогичным проволочным контуром. В XIX веке бельгийский физик Жозеф Плато, проводя эксперименты с мыльной пленкой, задался вопросом, всегда ли возможны такие поверхности с «минимальными» площадями и являются ли они настолько ровными, что каждая точка их пространства выглядит одинаково, независимо от того, насколько сложна или извилиста проволочная рамка.

Ответ на поставленный им вопрос, который в итоге получил название «задача Плато», удалось найти, по крайней мере применительно к обычным, двумерным поверхностям, что в 1930 году доказал один математик из Нью-Йорка. Саймонс хотел выяснить, является ли это верным для минимальных поверхностей с более сложными поверхностями – то, что геометры называют минимальными поверхностями в римановых многообразиях.

Математики, которые занимаются решением теоретических задач, зачастую с головой погружаются в свою работу: годами они видят в снах решение своей задачи, мечтают и размышляют о ней во время прогулок. Те, кто не сталкивался с так называемой абстрактной или чистой математикой, расценят это как бессмысленное занятие.

Однако Саймонс не просто решал уравнения, как какой-то старшеклассник. Он надеялся открыть и систематизировать универсальные принципы, правила и законы, которые расширят понимание об этих математических объектах.

Альберт Эйнштейн утверждал, что есть естественный порядок вещей; можно сказать, что математики, наподобие Саймонса, занимаются поиском доказательства существования такого мироустройства. В этой работе заключается истинная красота, особенно когда в результате удается раскрыть новые сведения о естественном порядке Вселенной. Подобные теории зачастую находят практическое применение, даже по прошествии многих лет, расширяя наши познания о Вселенной.

В результате, благодаря разговорам с Фредериком Альмгреном-младшим, профессором из Принстонского университета, который нашел решение этой задачи в трех измерениях, Саймонс смог добиться существенного прорыва. Джеймс создал собственное дифференциальное уравнение в частных производных, известное как «уравнение Саймонса», и использовал его для разработки единого решения для шести измерений, а также предоставил контрпример для седьмого измерения. Спустя какое-то время трое итальянцев, в том числе обладатель Филдсовской премии Энрико Бомбиери, доказали, что приведенный контрпример был верен.

В 1968 году Саймонс опубликовал статью «Минимальные поверхности в римановых многообразиях», которая стала фундаментальной работой для геометров, а также оказалась полезной для ряда смежных дисциплин. Исследователи по-прежнему цитируют статью, что только подчеркивает ее непреходящее значение. Благодаря этим достижениям Саймонс стал одним из самых выдающихся геометров в мире.



Несмотря на достигнутый успех на поприще математики и расшифровки кодов, Джеймс продолжал искать новые источники дохода. IDA предоставляла научным сотрудникам гибкий график работы, что позволило Саймонсу находить время для изучения фондового рынка. Работая совместно с Баумом и двумя другими коллегами, Джеймсу удалось разработать новую систему торговли ценными бумагами. В рамках работы в IDA они опубликовали секретную статью под названием «Вероятностные модели и прогнозирование конъюнктуры фондового рынка», в которой утверждали, что предложенный метод торговли способен принести годовую доходность в размере минимум 50 %.

Саймонс и его коллеги отбросили главную информацию, которую берут в расчет большинство инвесторов: прибыль, дивиденды и корпоративные новости – то, что взломщики кодов называют «базовая экономическая статистика рынка». Вместо этого они предложили искать небольшое количество «макроскопических переменных», которые позволяют прогнозировать поведение рынка в краткосрочной перспективе. Они утверждали, что финансовый рынок имеет восемь базовых «состояний», таких, как «высокая дисперсия», когда колебания цен превышают средний уровень, и «хорошее», когда цены растут постепенно.

Перейти на страницу:

Похожие книги

Лабиринт: искусство принимать решения
Лабиринт: искусство принимать решения

Любое решение, которое вы принимаете, меняет вашу жизнь.Роковое слияние «Даймлера» и «Крайслера». Банкротство «Miramax». Авария на «Аполлоне-13».Что объединяет все эти события? Ошибки, которых можно было избежать на этапе принятия решений.Каждый наш шаг – это выбор, но мы редко задумываемся над ним, спеша жить дальше. Международный эксперт по лидерству Павел Мотыль описывает 16 правил эффективного принятия решений, которые заставят вас измениться. Он анализирует не только примеры из мира бизнеса (хотя именно их тут больше всего), но и нетривиальные случаи из жизни альпинистов, астронавтов, военных и… мафиози.Скорость жизни стремительно растет, а мы блуждаем в сложном лабиринте решений. 16 простых и практичных правил помогут справиться с самыми рискованными ситуациями и найти выход из самого запутанного лабиринта.

Павел Мотыль

Деловая литература / Зарубежная деловая литература / Финансы и бизнес