Суммарная погрешность предсказания складывалась из нескольких факторов, в число которых входили неточность наших измерений времени, скачки шарика на разделителях (ребрах) ячеек ротора, отклонения шарика при столкновении с металлическими дефлекторами при спиралевидном движении вниз по статору и возможный наклон колеса. Если предположить, что суммарная ошибка имеет приблизительно нормальное распределение (то есть распределение Гаусса с его кривой в форме колокола), нам нужно было, чтобы стандартное отклонение (мера неопределенности) погрешности предсказания от точного результата составляло не более шестнадцати ячеек (0,42 полного оборота) – только в этом случае мы могли получить преимущество. Мы добились более точной оценки – всего в десять ячеек, то есть 0,26 оборота. Это позволяло нам получить для ставки на предсказанное число огромное преимущество 44 %. Поставив же еще и на две пары чисел, расположенные по обе стороны от предсказанного, то есть всего на пять чисел, мы могли уменьшить риск, сохраняя при этом преимущество 43 %.
Применение физики для выигрыша в рулетку напоминает о странной игре в русскую рулетку. В ней невозможно выиграть, но физика может помочь игроку остаться в живых. Это название, по-видимому, впервые появилось в рассказе Жоржа Сурдеса, опубликованном в 1937 году:
Слыхали ли вы о русской рулетке? […] Когда русская армия воевала в Румынии, году этак в 1917-м, какой-нибудь офицер вдруг доставал свой револьвер, вставлял в барабан один патрон, раскручивал барабан, захлопывал его и, поднеся револьвер к своей голове, нажимал на спусковой крючок.
Крутящийся барабан револьвера напоминает вращающийся ротор рулетки. Если в барабане есть шесть ячеек, лишь одна из которых заряжена, вероятность выстрела, казалось бы, должна быть равна одной шестой. Однако если держать исправный, хорошо смазанный револьвер параллельно земле, то в результате воздействия силы тяжести на массу патрона барабан будет стремиться остановиться в таком положении, в котором ячейка с патроном будет находиться внизу, – если, конечно, барабан останавливается самопроизвольно. Если барабан фиксируют затем в этом положении, шансы игрока изменяются в его (женщины слишком умны, чтобы играть в такие игры) пользу[110]
. По словам моей младшей дочери, проработавшей более двух десятков лет помощником окружного прокурора, современным криминалистам это известно.Работать с Шенноном, обладавшим настоящей сокровищницей увлекательной информации и изобретательных идей, было наслаждением. Когда мы говорили о необходимости держать наши разработки в тайне, он упомянул, что теоретики социальных связей, изучающие распространение слухов и разглашение секретов, утверждают, что если взять случайным образом двух жителей, например, Соединенных Штатов, то обычно оказывается, что между ними существует цепочка из трех или менее знакомых – так называемые «три уровня разделения». Эту теорию легко проверить при знакомстве с ранее неизвестным вам человеком: нужно спросить его, кого он знает из знаменитостей. Скорее всего, кто-нибудь из знаменитостей, с которыми знаком он, знает кого-нибудь из знаменитостей, с которыми знакомы вы. Такая цепочка содержит следующие связи: 1) между вами и знакомой вам знаменитостью, 2) между вашим знаменитым знакомым и знаменитым знакомым вашего собеседника и 3) между этой знаменитостью и вашим собеседником. Участие в цепочке двух знаменитостей добавляет в нее два уровня разделения.
По своей привычке, оставшейся у меня на всю жизнь, я неоднократно проверял это утверждение, часто получая при этом самые удивительные результаты. Однажды, когда я ехал на поезде из Нью-Йорка в Принстон, Нью-Джерси, я заметил, что сидевшая рядом со мной хорошо одетая немолодая дама располагающей внешности явно о чем-то беспокоится. Она не понимала ни по-английски, ни по-французски, ни по-испански, но, когда я заговорил с нею на своем несовершенном немецком, объяснила мне, что не знает, где ей выходить в Филадельфии. После того, как я помог ей разобраться с этим, я узнал, что она работает в экономическом ведомстве в Будапеште и едет на какое-то совещание. Я решил сыграть с ней в игру «уровней разделения».
– Не знаете ли вы в Будапеште кого-нибудь по фамилии Синетар? – спросил я.
– Конечно, знаю. Это очень известная семья, – отвечала она. – Есть такой кинопродюсер Миклош Синетар, а еще есть инженер и психолог.
– Тогда они должны быть родственниками моей жены, – сказал я.
Я – Вивиан – Синетар из Будапешта – моя спутница-экономист. Два уровня разделения. До сих пор мне ни разу не приходилось встречать незнакомого человека, от которого меня отделяло бы более трех уровней.