Известный американский физик Фримен Дайсон пишет: «Законы термодинамики утверждают, что любое количество энергии обладает характерным качеством, связанным с ним, — энтропией. Энтропия измеряет степень беспорядка, хаотичности, связанной с энергией. Энергия всегда будет превращаться из одной формы в другую так, чтобы энтропия возрастала. Воспользовавшись этим обстоятельством, мы можем расположить разные формы энергии „по порядку значимости“, где высшее место займет форма, которой присуща минимальная энтропия или минимальный хаос… Направление потока превращений энергии во Вселенной задается, главным образом, свойствами гравитации: прежде всего тем, что она преобладает в космосе количественно, а кроме того, тем, что гравитация является высшей формой энергии. Высшей — ибо она обладает нулевой энтропией».
Низшая форма энергии в этом смысле — тепло, теплота. В теплоту могут превращаться все виды энергии — от гравитационной до химической.
Но тогда встает вопрос: почему Вселенная еще существует? Ведь перед нами энергетический поток, который течет в одну сторону. Океан гравитационной энергии изливается могучими реками, непрерывно переходит в свет и тепло. И остается все тем же неиссякаемым океаном. Почему? Мало того, по Дайсону, закон всемирного тяготения отпускает нашей Галактике всего сто миллионов лет существования, причем не с сегодняшнего дня, а так сказать, с того момента, как она приняла тот вид, который имеет последние несколько миллиардов лет. Расчет прост. В одном кубометре нашей Галактики, если учесть и звезды, и планеты (правда, пока достоверно известна лишь одна планетная система — Солнечная), и межзвездный газ, в среднем находится миллион атомов. Сто миллионов лет — время, которое должно было бы запять свободное падение всего этого вещества к общему гравитационному центру Галактики. Но закон всемирного тяготения при грандиозных масштабах своего действия все-таки не один управляет развитием Вселенной.
Мы обязаны сменой дня и ночи вращению Земли. Но точно так же вращаются все небесные тела. Когда Солнечная система возникала из сгустившегося межзвездного газа, именно вращение облака, из которого образовались и светило, и его планеты, помешало всему этому облаку собраться под воздействием сил тяготения в единый центр.
Наконец, термоядерные процессы, идущие в недрах звезд, не дают им сжиматься слишком сильно, противостоя силе тяготения, стремящейся стянуть массу звезды к ее центру.
Словом, гравитация, которую мы только что осыпали комплиментами (самая могучая… высшая форма энергии… и тому подобное) оборачивается злобным демоном вселенской истории, угрожающим разрушить нашу Галактику. А вращательное движение и термоядерные реакции выступают как защитники Галактики (и Метагалактики— в ней, правда, вещество в миллион раз разреженней, и сроки жизни соответственно в тысячу раз — по закону Ньютона — дольше) от этого злого гения Вселенной. Но ведь и вращательное движение звезд и звездных систем тесно связано, как подчеркивал Дайсон, с гравитационной энергией. Мало того. Сами термоядерные реакции возможны только при высоких температурах, а в разогреве масс протозвезд играло весьма значительную роль гравитационное сжатие.
Гравитация ведет себя как копье Геракла: рапы, которые наносило его острие, можно было вылечить прикосновением древка.
Во внутризвездных масштабах, как и в галактических, тяготение играет важнейшую роль. Жизнь звезды — борьба, как и жизнь галактики, как и жизнь человека. Три главные силы встречаются здесь в чудовищном противоборстве: гравитация, ядерные реакции и центробежная сила. Ярче всего это видно на примере событий, которые называют гравитационным коллапсом.
Встреча у черной дыры
Коллапс — термин, первоначально гораздо более популярный в медицине, чем в космологии. Сосудистый коллапс может привести к гибели человека. Гравитационный коллапс может привести звезду если не к гибели, то к перерождению. Он может произойти не со всякой звездой, а только с такой, масса которой превышает солнечную процентов по меньшей мере на двадцать. И может произойти, а может и не произойти. Это, как пишут физики, один из возможных путей завершения эволюции звезд. Возможных, но не обязательных.
Чем станет звезда после гравитационного коллапса? Может быть, нейтронной звездой, а может быть, даже черной дырой.
Термоядерные реакции, по наиболее признанной сегодня теории, дают звезде энергию, которую она тратит на излучение[16]
. Но термоядерные реакции ведут к образованию все более тяжелых ядер элементов из ядер легких, пока, наконец, дело не дойдет до появления в центральной области звезды огромного количества ядер группы железа. Ядра железа и его химических сородичей относительно весьма прочны. Нуклоны в них связаны друг с другом так крепко, что синтез на этой «железной» основе более тяжелых ядер не только не ведет к выделению энергии, но, наоборот, требует се затрат.