Читаем Чем мир держится? полностью

Центр звезды, ее топка, перестает работать, затухает. Однако потери звездою энергии не только не падают, но растут. А между тем внутри каждой звезды на всем протяжении ее развития борются силы гравитационного притяжения и силы отталкивания частиц, притиснутых друг к другу чудовищным давлением и «желающих» чувствовать себя попросторнее в каждой ее точке. Наступает, наконец, момент, когда гравитационные силы решительно берут верх над силами отталкивания. Разумеется, это означает, говоря философски, что рассматриваемое природное явление должно после некоторых изменений прийти в повое состояние равновесия. Да, конечно, такое состояние возникает. Но какой ценой! Бывшая топка звезды, ее сердцевина, оказывается сжатой действием неуравновешиваемых сил тяготения. Их нажима не выдерживают и прочнейшие связи между нуклонами в ядре железа и его родственников. Ядро разваливается, или, лучше сказать, разламывается. На это разламывание тоже уходит энергия, потому топка становится теперь топкой наоборот: берет энергию, а не отдает ее, в недрах звезды идет вывернутая наизнанку реакция синтеза ядер. Впрочем, температура топки все же не падает, ведь звезда сжимается, а гравитационная энергия, как мы знаем, способна переходить в тепло не хуже любой другой..

Если бы температура в центре звезды поднималась быстро, разогретое вещество набралось бы силы, чтобы побороться с тяготением, чтобы остановить сжатие. Но большая часть тепла расходуется все на ту же «обратную термоядерную реакцию».

Сжатие продолжается, пока не превращается в сжатие взрывное, когда вещество центральной области звезды устремляется к центру ее со скоростью, достигающей на определенных этапах многих километров в секунду. Естественно, что на место уже обрушившихся более близких к центру слоев рушатся слои, более близкие к поверхности. Катастрофа развивается!

Нашему Солнцу взрывной коллапс не угрожает, Слишком для этого мала масса светила. Вот если бы оно было больше хотя бы в один и два десятых раза… Впрочем, в Галактике множество звезд, больших, чем Солнце. Гравитация в конце концов приведет их к сжатию, и они превратятся в нейтронные звезды.

Но и нейтронная звезда еще не дает нам предела плотности, возможного для вещества. Если гравитационный коллапс не остановился, она схлопывается — при определенных условиях — еще примерно на треть своего диаметра. И вот тут-то из нее получается черная дыра. Космическое тело исчезает с небосклона, потому что тяготение вблизи его поверхности достигает такой фантастической величины, что даже и свет оказывается «прикован» и не может уйти в пространство. То же относится и к любым другим формам вещества. Все, что достигает этого района, заглатывается черной дырой безвозвратно. Она становится грандиозной гравитационной ловушкой. Даже гравитационным гробом, как назвал ее академик Я. Зельдович. И не только для вещества. Само пространство-время приобретает здесь новые свойства.

Немецкий астроном Карл Шварцшильд в первые же месяцы после появления теории относительности нашел на основе ее уравнений, что если достаточно плотная звезда сожмется до определенных размеров, до своего так называемого гравитационного радиуса (в каждом случае зависящего от ее массы), то никакие сигналы с этой звезды уже не смогут выйти наружу. Слишком сильно будет искривлено окружающее ее пространство-время.

Черные дыры долю оставались, однако, да периферии космологии и астрофизики. Но с шестидесятых годов положение изменилось. Число посвященных им работ растет чуть ли не с той же быстротой, с какой они сами — в теории — схлопываются.

Какой реально должна быть черкая дыра, первыми показали советские физики А. Г. Дорошкевич, Я. Б. Зельдович и И. Д. Новиков в 1965 году.

Вращающаяся черная дыра становится центром вихря, засасывающего по воронкообразным орбитам частицы и газ. Она имеет четко очерченный горизонт, через который вещество и свет могут проходить только в одну сторону — внутрь, но не наружу[17]; окружность ее экватора должна быть равна девятнадцати километрам, помноженным на число масс Солнца, которым соответствует масса черной дыры. «Типичная» черная дыра имеет в «охвате» от шестидесяти до тысячи километров, и масса ее может содержать от трех до пятидесяти солнечных масс.

Кроме «типичных» черных дыр, могут существовать еще и дыры сверхгигантские. Ими, возможно, становятся центры галактик, в ядрах которых в прошлом происходили мощные взрывы. Если такая дыра есть и в центре нашей Галактики, то ее масса должна быть в сто миллионов раз больше массы нашего Солнца.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже