Читаем Черные дыры и молодые вселенные полностью

Принцип неопределенности Гейзенберга показал, что нельзя точно измерить состояние системы, а потому невозможно предсказать вероятность различных последствий. И вот этот-то элемент случайности или вероятности очень озаботил Эйнштейна. Он отказывался верить, что физические законы не могут точно и однозначно предсказать, что произойдет. Но все свидетельствовало о том, что от феномена кванта и принципа неопределенности никуда не деться и что они заняли свое место во всех отраслях физики.

Общая теория относительности Эйнштейна – это так называемая классическая теория, то есть она не включает в себя принцип неопределенности. Поэтому требуется найти новую теорию, которая охватила бы общую теорию относительности и принцип неопределенности. В большинстве ситуаций разница между этой новой теорией и классической теорией относительности будет весьма мала. Дело в том, что, как было замечено ранее, неопределенность, вызванная квантовым эффектом, существует только в очень матом масштабе, в то время как общая теория относительности имеет дело со строением пространства-времени в очень большом масштабе. Однако теоремы сингулярности, доказанные Роджером Пенроузом и мной, показали, что пространство-время окажется сильно искривленным и в очень малом масштабе. Действие принципа неопределенности станет тогда очень важным и, наверное, приведет к некоторым замечательным результатам.

Проблемы Эйнштейна с квантовой механикой и принципом неопределенности частично возникали из-за того, что он пользовался обычным, основанным на здравом смысле понятием, что система имеет определенную предысторию. Частица находится либо в одном месте, либо в другом. Она не может быть наполовину в одном месте, наполовину в другом. Аналогично событие вроде посадки астронавтов на Луну или имело место, или нет. Оно не могло состояться наполовину. Это все равно что быть отчасти мертвым или отчасти беременной. Тут либо да, либо нет. Но если система имеет единственную, определенную предысторию, принцип неопределенности приводит ко всевозможным парадоксам, таким как нахождение частицы сразу в двух местах или как астронавты, наполовину достигшие Луны.

Изящный способ избежать этих парадоксов, так тревоживших Эйнштейна, выдвинул американский физик Ричард Фейнман. Фейнман стал известен в 1948 году своей работой по квантовой теории света. В 1965 году он вместе с другим американским физиком, Джулианом Швингером, и японским физиком Синисиро Томонага получил Нобелевскую премию. Но Фейнман был настоящим физиком в традициях Эйнштейна и ненавидел помпу и интриги. Он отказался от членства в Национальной Академии наук, так как обнаружил, что большую часть времени академики проводят, решая, кого из ученых принять в Академию. Фейнман, умерший в 1988 году, запомнится большим вкладом в теоретическую физику. Одним из его достижений являются носящие его имя диаграммы, ставшие основой почти для всех расчетов в физике частиц. Но еще более важный вклад – его концепция суммы предысторий. Идея заключалась в том, что система не имеет единственной предыстории в пространстве-времени, как принято считать в классической неквантовой теории. Вместо этого она имеет все возможные предыстории. Рассмотрим для примера частицу, находящуюся в определенное время в точке А. Согласно сумме предысторий она может двигаться по любому пути, начинающемуся в этой точке. Это вроде того как капнуть чернилами на промокашку. Частицы чернил расползутся по промокашке во все стороны. Даже если вы прервете прямой путь между двумя точками, прорезав бумагу, чернила распространятся за ее края.

С каждым путем или предысторией частицы можно ассоциировать число, зависящее от формы пути. Вероятность того, что частица пройдет из точки А в точку В, получается путем суммирования чисел, ассоциированных со всеми путями, ведущими частицу из точки А в точку В. Но числа от прямых путей сложатся с числами от почти прямых путей. Таким образом, главный вклад в вероятность будет сделан прямыми или почти прямыми путями. Вот почему след от частицы, проходящей через пузырьковую камеру, выглядит почти прямым. Но если вы вставите в разрез на пути частицы нечто вроде стенки, пути частиц могут распространиться в обход стенки, и может появиться вероятность обнаружить частицы в стороне от прямого направления через разрез.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки