Читаем Черные дыры и складки времени. Дерзкое наследие Эйнштейна полностью

Примерно тогда же, когда Гинзбург сделал это открытие, у группы Зельдовича, ведущими в которой были Игорь Новиков и Андрей Дорошкевич, возник вопрос: поскольку при схлопывании круглой звезды возникает круглая черная дыра, будет ли из деформированной звезды возникать деформированная дыра? Как крайний случай, образуется ли из квадратной звезды квадратная черная дыра (рис. 7.36)? Расчет схлопывания гипотетической квадратной звезды был бы чрезвычайно трудным делом, поэтому Дорошкевич, Новиков и Зельдович рассмотрели более простой пример: будет ли при схлопывании почти сферической звезды, имеющей на поверхности небольшую горку, образовываться черная дыра с гористым выступом на горизонте событий? Рассматривая почти сферические звезды с небольшими горками, группа Зельдовича смогла значительно упростить свои расчеты. Они использовали математические методы, называемые методами возмущений, которые несколько лет тому назад были введены Джоном Уилером и его сотрудником Туллио Редже. Эти методы возмущений, объяснение которых дано на Врезке 7.1, были разработаны для исследования небольшого «возмущения» сферической формы. Гравитационное искажение вследствие наличия небольшой горки на звезде, которую рассматривала группа Зельдовича, и являлось таким возмущением.

Дорошкевич, Новиков и Зельдович еще более упростили свои расчеты, использовав тот же самый трюк, который в свое время использовали Оппенгеймер и Гинзбург. Вместо того чтобы рассчитывать полную динамическую картину схлопывания «гористой» звезды, они изучили последовательность статичных «гористых» звезд, каждая из которых была более компактна, чем предыдущие. Этот дружный коллектив ученых быстро достиг успехов и получил замечательный результат: когда статичная, «гористая» звезда станет достаточно маленькой и вокруг нее образуется черная дыра, горизонт событий этой дыры будет совершенно круглым, и не будет содержать никаких выступов (рис. 7.3в).

Таким же образом, логично было заключить, что при схлопывании квадратной звезды образуется черная дыра, горизонт событий у которой также не квадратный, а круглый (рис. 7.3б). Если бы этот вывод был правильным, из него следовало бы, что черная дыра вообще не должна «чувствовать», являлась ли создавшая ее звезда квадратной, круглой или «гористой», а также (в соответствии с данными Гинзбурга) замагниченной или нет.

Спустя несколько лет, когда этот вывод постепенно приобретал все большее число поклонников, Джон Уилер придумал для его описания лаконичную фразу: «У черной дыры нет волос». Под «волосами» имелось в виду любое возможное проявление черной дыры, выдающее ее происхождение.

Врезка 7.1

Объяснение метода возмущений для читателей, любящих алгебру

Из алгебры все мы знаем формулу квадрата суммы двух чисел: + Ь)2 = а2 + 2 ab + b2.

Предположим, что а — большое число, например, 1000, а b — очень маленькое, например, 3. В таком случае третий член этой формулы, b , будет очень мал по сравнению с остальными двумя и может быть отброшен без большой ошибки:

(1000 + 3)2 = 10002 + 2x1000x3 + з2 = 1006009 10002 + 2x1000x3 = 1 006 000.

Методы возмущения основаны на этом приближении. Выражение а = 1000 соответствует точно сферической звезде, b = 3 — маленькой горе на ее поверхности, а выражение (а + b) — кривизне пространства-времени, созданной совместно звездой и горой. При расчете кривизны методами возмущений остаются только линейные эффекты свойств

горы (эффекты типа 2ab = 6000, линейные по отношению к b— 3); эти

2

методы не учитывают все остальные эффекты горы (такие, как b 2 9). Поскольку гора ничтожно мала по отношению к звезде, эти методы являются достаточно точными. Тем не менее, если гора вырастает до размеров звезды (т. е. звезда становится, скорее, квадратной, чем круглой), в этом случае методы возмущений приведут к серьезной ошибке, подобно той, которая возникла бы в случае а = 1000 и b = 1000:

(1000+1000)2=10002+2x1000x1000+10002=4000000/=10002+2x1000x100=3000000.

Эти два результата сильно отличаются друг от друга.

Перейти на страницу:

Похожие книги