Читаем Черные дыры и складки времени. Дерзкое наследие Эйнштейна полностью

Если масса звезды меньше, чем предел Чандрасекара, например, если эта звезда — само Солнце, то в конце жизни она последует по пути, обозначенном на рис. 5.3 «смерть Солнца». Излучая энергию во внешнее пространство, звезда постепенно охлаждается, в результате уменьшается тепловое (обусловленное высокой температурой) давление. С уменьшением давления противодействие силам собственной гравитации становится больше невозможным, что заставляет звезду сжиматься. Сжимаясь, звезда движется влево на рис. 5.3 в направлении уменьшения размера, оставаясь на графике всегда на одной и той же высоте, поскольку ее масса не меняется. (Следует иметь в виду, что на графике масса отложена по вертикальной оси, а длина окружности увеличивается вправо, по горизонтальной оси.) Сжимаясь, звезда стискивает свои внутренние электроны в ячейках, которые становятся все меньше, пока, наконец, электроны не ответят столь сильным

давлением вырождения, что звезда не сможет более продолжать сжатие. Давление вырождения противодействует внутренней гравитационной силе, вынуждая звезду упокоиться в «могиле» белого карлика на граничной кривой (кривая белых карликов) между светлой и заштрихованной областями рис. 5.3. Если звезда сожмется еще больше (т. е. будет двигаться влево от кривой белых карликов в заштрихованную область), ее давление электронного вырождения возрастет и заставит звезду расшириться и тем самым вернуться на кривую белых карликов. Если звезда расширится в светлую область, давление электронного вырождения ослабнет и позволит гравитации опять сжать ее, вновь вернув к кривой. Таким образом, у звезды нет иного выбора, кроме как навсегда оставаться на этой кривой белых карликов (где гравитация и давление полностью уравновешиваются), постепенно охлаждаясь и превращаясь в черный карлик — холодное темное твердое тело размером с Землю и массой с Солнце.

Если звезда более массивная, чем предел Чандрасекара (1,4 массы Солнца), например Сириус, то в конце своей жизни она последует по пути, намеченному на рисунке как «путь Сириуса». Излучая и охлаждаясь,

звезда будет двигаться влево по этому пути, в сторону уменьшения размера, при этом внутренние электроны будут стиснуты во все меньших и меньших ячейках. Их протест выразится во все нарастающем давлении вырождения, но он напрасен, поскольку из-за большой массы гравитация звезды достаточно сильна, чтобы подавить протест электронов. Электроны никогда не смогут создать достаточное давление вырождения, чтобы уравнять гравитацию44, и звезда должна будет, по мнению Эддингтона, «продолжать излучать и излучать, сжиматься и сжиматься, пока она не достигнет радиуса равного нескольким километрам, когда гравитация станет достаточно сильной, чтобы удержать излучение: тогда звезда, наконец, сможет обрести покой».

Такая судьба ожидала бы звезды, если бы не нейтронные звезды. Если Цвикки был прав, доказывая их существование, они могли бы быть аналогами белых карликов, но с внутренним давлением вырождения, создаваемым не электронами, а нейтронами. Это означает, что на рис. 5.3 должна находиться кривая нейтронных звезд, аналогичная кривой белых карликов, но с длиной окружности (откладываемой по горизонтальной оси) примерно в сотню километров, вместо десятков тысяч километров. На этой кривой нейтронное давление полностью уравновешивается гравитацией, и следовательно, нейтронные звезды здесь могут покоиться вечно.

Предположим, что кривая нейтронных звезд простирается вверх на рис. 5.3 в направлении больших масс, т. е. предположим, что она имеет вид кривой В на этом рисунке. Тогда Сириус, умирая, не сможет образовать черную дыру. Вернее, Сириус будет сжиматься до тех пор, пока не натолкнется на кривую нейтронных звезд, после чего сжиматься далее не сможет. Если он попробует еще уменьшиться (т. е. двигаться влево от кривой нейтронных звезд в заштрихованную область), то внутренние нейтроны ответят протестом на подобную попытку их ущемления — они породят большое давление (частично из-за вырождения, т. е. «клаустрофобии», частично из-за ядерных сил), и это давление будет достаточно сильным, чтобы преодолеть гравитацию и вернуть звезду к прежнему состоянию. Если же звезда попытается вновь расшириться в светлую область, давление нейтронов настолько ослабнет, что гравитация опять начнет сжатие. Таким образом, у Сириуса не останется другого выбора, кроме как остановиться на кривой нейтронных звезд и оставаться здесь вечно, постепенно остывая и становясь твердой холодной черной нейтронной звездой.

Перейти на страницу:

Похожие книги